
A Tour Through Cedar

Warren Teitelman

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Introduction

This paper t l introduces the reader to many of the salient features of
the Cedar Programming Environment, a state-of-the-art programming
system that combines in a single integrated environment: high quality
graphics, a sophisticated editor and document preparation facility, and
a variety o f tools for the programmer to use in the construction and
debugging o f his programs. The Cedar Programming Language [8] is
a strongly-typed, compiler-oriented language of the Pascal family. What
is especially interesting about the Cedar project is that it is one of the
few examples where an interactive, experimental programming
environment has been built for this kind o f language. In the past, such
environments have been confined to dynamically typed languages like
Lisp and Smalltalk.

The paper attempts to give the reader the feel of the Cedar system by
simulating a live demonstration. The demonstration is actually taken
from a video tape o f such a live demo; the sequence of events, as well
as the dialogue, is fairly close to what a viewer of this tape would see
and hear. Numerous snapshots of the display taken at various points
during the session simulate the visual information contained in the
tape. Text that would actually appear on the display during the
demonstration - either because the user typed it or the system printed
it - will appear in this paper in a distinguished font. The explanations
that the demonstrator would give will be in the normal font. Comments
that would be distracting during a live demonstration but are
appropriate for the paper are included as footnotes, t2

Background

In 1977, the computing community at Xerox Palo Alto Research Center
(PARC) consisted of three distinct cultures: interlisp [15], Smalltalk
[6], and Mesa [111, Both the Smalltalk and Mesa communities
programmed primarily on the Alto, a small personal computer that
had been developed at PARC [16]. The Interlisp programmers operated
on a time-shared, main-frame computer. Each o f these communities
was beginning to run into the limits imposed by the size of memory,
both real and virtual, and by the computational power that the
corresponding machine provided.

We decided to solve these problems by designing and building a much
more powerful personal computer, the Dorado [7]. The arrival o f the
Dorado in 1978 resolved our immediate hardware problems of

t l This paper is a condensed version of a paper contained in [14]; because of space
limitations, many of the figures have been removed and comments have been abbreviated
or eliminated. [14] also contains a second paper entitled "The Roots of Cedar," which
describes the conditions in 1978 that led us to embark on the Cedar project, and helped
us to define its objectives and goals, as well as a third paper entitled "Cedar: The
Report Card." which evaluates the successes and failures of Cedar.

t2 These footnotes contain a lot of information about Cedar: why we did things certain
ways, how useful a particular feature turned out to be, etc. For some readers of this
paper, the footnotes will contain the most interesting material. However, the reader who
is unfamiliar with Cedar and simply wants to get an overview might find the footnotes
distracting to the flow of the demonstration. Therefore. a good way for him to read this
paper might be to ignore the footnotes on the first reading (especially the long ones),
and then come back to them later.

execution speed, memory size, and address space. Our ability to
experiment with computer systems, critical to our research, was now
limited only by our programming capabilities of which the principal
component was the programming environment.

Thus, in 1978 we embarked on a project to design and implement
Cedar, an advanced programming environment that would take
advantage of the capabilities provided by the Dorado. A group of us
met for several months and produced a catalogue o f programming
environment capabilities for such an environment [4]. At this point,
we were not committed to either o f the three principal programming
languages in use at PARC, but after lengthy deliberations we decided
to base Cedar on Mesa [14]. However, our goal was that Cedar would
support each o f the Lisp, Mesa, and Smalltalk programming styles.

For various reasons as the Cedar project evolved, some of our goals
changed, or at least were reprioritized; a fair characterization o f the
Cedar project as it is currently constituted is that it is an attempt to
take the Mesa language and build for it a programming environment
based on ideas and techniques from Interlisp and Smalltalk.

Now let's begin our tour.

The Display

You are looking at (see Figure 1) a bitmap display connected to my
personal computer, a Dorado.t3 The figures you see at the bottom of
the screen in Figure 1 are called icons. They represent objects that are
o f potential interest, but not currently in active use. Some of them
represent text documents, scanned images, or other data structures that

Figure 1: Initial cedar screen layout showing various icons

f3 All Dorados have as a display a high resolution television monitor. 1024 pixels wide
by 808 high. The physical dimensions of the display are 12" x 9". Figures in this paper
that show the entire display are about 1/2 scale (but full resolution).

0270-5257/84/0000/0181501.00@1984 IEEE
181

I can look at and manipula te . Others represent tools or services that 1
can use. The i r shapes are mean t to be suggestive o f their functions.
For example , the icon on the lower r ight in F igure 1 that looks like a
mai l box represents my mail reader, cal led Walnut . The fact that the
flag on the mail box is up indicates that I have new mail. The icon
nex t to the mai lbox that looks l ike a stack of envelopes represents my
act ive message set. We will use both o f these later in the demonstrat ion.
The icon next to my messages is used for sending hardcopy to the
p r in te r down the hall whose name is Clover, and the icon in the left
h a n d corner o f the display that looks l ike a file cabinet views the
Fi leTool , a facility for ob ta in ing files from remote servers. t4

Viewers Window Package

The Viewers W i n d o w Package provides the basic display parad igm for
Ceda r [10]. I t al lows users and programs to create, destroy, move, and
resize ind iv idual rec tangular viewing areas called viewers, (To a first
approx imat ion , a viewer corresponds to what is cal led a window in
m a n y o ther systems.) Some viewers present textual or graphical data
to the user; o thers provide the user with various forms o f control, such
as access to facilit ies or the abil i ty to invoke procedures. Viewers that
p rov ide access to a facility are cal led tools, and viewers that s imply
invoke a p rocedure are cal led buttons, t5 The FileTool and the Wa lnu t
Mai l Reade r shown at the bot tom of F igure 1 are examples o f tools,
and the nine small boxes label led Idle, Clean, New, et at, at the upper
r ight in F igure 1 are examples o f buttons.

The icons at the bot tom o f F igure 1 are also viewers - viewers in their
iconic form. Opening an iconic viewer tells the Viewers Package to
al locate screen real estate to the viewer in the center port ion o f the
display (see F igure 2), thereby al lowing the viewer to present its
contents in a more comprehens ive fashion. Conversely, closing a viewer
releases the space that the viewer current ly occupies, and causes i t to
be d isp layed in iconic form at the bot tom of the screen.

The user can open an icon by point ing at i t using a device called a
mouse [16]. Poin t ing is accompl ished by s l iding the mouse a long a
hor izontal surface to posi t ion a mouse-cont ro l led cursor on the display.
(In F igure 1, the cursor is d isplayed near the center o f the screen as
an arrow.) W h e n the desired location is reached, the user depresses
and releases one o f the three but tons located on top of the mouse. We
use the verb click to describe this act o f pos i t ioning the cursor and
press ing and releasing a button. Let 's open the icon for the Clock and
the FileTool. This produces the configurat ion shown in Figure 2 in
which both the Clock and the FileTool viewers now occupy large.
rec tangular areas whose he ight is nearly the height o f the ent i re display.

Figure 2: The same display after open ing the Fi leTool and Clock
viewers

Mos t top-level viewers (viewers tha t are themselves not conta ined as
par t o f ano the r viewer) include a collection of but tons for invoking
var ious opera t ions associated with that viewer. For example, the
Fi leTool v iewer includes but tons for retrieving, storing, and listing
files. The user clicks a but ton to m a k e the corresponding operat ion
happen. Often, these but tons are ar ranged in a horizontal array called
a menu tha t is d isp layed jus t below the viewer 's caption, the black area
at the top o f each opened viewer that contains the viewer 's name. For
example , the Clock has a m e n u that includes the but tons SwapColor
and ChangeOffse t (see Figure 2). More elaborate m e n u s are associated
wi th text viewers, as shown in F igure 6.

In addi t ion to but tons specific to par t icular classes of viewers, but tons
for var ious opera t ions tha t apply to all viewers regardless of their class,
such as Destroy, Close, and Switch columns, are conta ined in a m e n u
tha t is h idden unde r the caption. This caption m e n u is only displayed
when the mouse is actual ly in the caption area (it can be seen in
F igure 10). O the r but tons for invoking system-wide activities, such as
creat ing a new viewer, per forming a checkpoint , and booting, are not
con ta ined in a par t icular viewer bu t instead are inc luded in the message
area at the top o f the screen (see F igure 2). For example, the but ton
PS (Pr intScreen) is used to produce hard copy images of port ions o f
the screen and was used to generate the figures in this paper. The
r ema inde r o f the message area is used for d isplaying various comments
a b o u t the sys tem's status and behavior. The bot tom port ion o f the
screen is used for d isplaying icons.

The large, m idd l e par t o f the screen tha t in F igure 2 is now occupied
by the Fi leTool and Clock viewers is d iv ided into two columns, t6
W h e n more than one viewer is created or opened in the same column,
the viewers automat ica l ly share the space available, t7 Conversely, when
a v iewer is closed or destroyed, the screen space that i t occupied is
then shared a m o n g the remain ing viewers in its column. I f a v iewer is
grown, i.e., g iven the full co lumn to itself, then any other viewers in

t4 In a traditional time-sharing environment, users share files straightforwardly since
all files reside in the same place. In our distributed environment, files that are created
by a user on his personal machine can only be shared if they are stored on another
machine called afile-server, a computer with a large disk dedicated to the task of storing
and retrieving files, to which all of the personal machines have network access. For files
that are part of the standard system, such as sources, documentation, and fonts, the user
need not be aware of where the files are stored, or whether they have already been
retrieved onto his local disk - the system takes care of this automatically for him using
a version map that is built when the system is released. However, the user must explicitly
store, retrieve, and keep track of files that are not part of the standard system (but there
are packages to aid him in this task).

f5 The principal difference between a tool and a button is in the number of operations
and degrees of freedom they provide to the user. Tools typically allow the user to
specify a number of parameters (and retain these parameters between invokations),
whereas a button may take an argument, but essentially performs the same operation
each time.

f6 Both the width and height of these columns can be easily adjusted by the user
using the mouse.

t7 This strategy of placing viewers adjacent to one another with no overlapping and
no blank space is called tiling the screen. It is one of the most widely discussed aspects
of the Cedar user interface, and often leads to heated, religious debates between its
adherents and advocates of overlapping windows such as those employed in Interlisp
and Smalltalk. However, regardless of how they resolve them, each of these screen
management systems deal with the following issues: (a) provide for some form of default
window placement so that the user does not have to be involved in specifying the
position and size of windows if he does not wish to; (b) allow the user flexibility with
regard to screen layout (in particular, some way of overriding default window placement);
(c) strive to make maximal use of the screen real estate; (d) give the user a predictable
and intuitive model about what will happen to the display when he performs a given
operation. With regard to this framework, the two screen management algorithms have
different advantages and disadvantages. For example, overlapping windows give the
user a lot of flexibility with regard to screen layout, but can lead to wasted, i.e., unused,
screen space. On the other hand, no window need be larger than the information it
contains. Overlapping windows also have the advantage that the working set of active
windows can be quite large, since only a small portion of a window has to be visible
for the user to have access to the window. (This effect of using the corners as handles
for those windows that the user might want to access is provided for in Cedar through
icons.) However, users wind up spending a fair amount of time ensuring mat the desired
corners are always visible, and even so, overlapping windows seem to have an uncanny
knack for getting lost.

182

that column are automatically closed. To show you how this works,
I'll open the remaining icon on the left side of Figure 2, the one
labelled "Cedar" that looks like a chalkboard with erasers on its ledge.
This produces the arrangement shown in Figure 3.

" ~ l o r 4 , 4 0 o o u m e n t a l i o n B r o w s e r - - "

4

Figure 3: The FileTool and Documentation Browser share the left
column

Whiteboards

The viewer that I just opened is an example of a class of viewers
called whiteboards. A whiteboard is simply a viewer consisting of a
two-dimensional area in which viewers and text can be inserted,
removed, or repositioned, i.e., whiteboard viewers provide a spatial
way of organizing data. The whiteboard at the bottom of the left
column in Figure 3 serves as a documentation browser for Cedar.
Notice that not all of the information on the whiteboard is visible in
the viewer; the bottom of the viewer clips off additional information.
This particular class of viewers, whiteboards, elects to simply clip
information that is not visible, rather than scaling the display to fit
the amount of screen space available, as the Clock does in Figure 4.

In order to see more of this whiteboard viewer, let's move the FileTool
from the left-hand column to the right-hand column using the
appropriate button in the menu that is hidden under the FileTool's
caption. This produces the screen layout shown in Figure 4.

IH1 I I I l l l l l I

e d a r 4.4 D o o u m e n l e l t i o n B r o w s e r - - • 1 4

=d:,;:j;V~:i,~,2.~IE:2":i~2.,.:'.'j',~ ~2:,',#dF2~Frd;,£,'7

• .

Figure 4: The Cedar Documentation Browser

Online Documentation

The Cedar Documentation Browser shown in Figure 4 uses a
whiteboard viewer to display a data base for the online documentation
for Cedar [3]. About halfway down this whiteboard is a row of icons
for seven other whiteboards: Basics, Language, Components, Tools,
Interfaces, ToolBox, and Games. We can find out more about any of
these aspects of Cedar by browsing the corresponding whiteboard. To
do this, we follow the instructions displayed in the lower right hand
corner of the whiteboard: we move the mouse into the corresponding
icon and click the middle button. This will cause a new viewer for the
corresponding whiteboard to be created and displayed, t8 For example,
let's open the Components whiteboard, which includes whiteboards
for various important components of Cedar such as the Viewers
package, the Tioga editor, and the UserExecutive. The Components
whiteboard in turn contains an icon for the Viewers Package
whiteboard. If we middle-click this latter icon, we get the configuration
shown in Figure 5.

C e d a r 4.4 D o c u m e n t a t i o n B r o w s e r T h e V iewers C :omponent of Gedar

= = I _ : : : = , = I
~i~d r~e~e) m,,rr

Figure 5: Browsing the documentation using whiteboards

The whiteboard for the Viewers Package that appears on the right in
Figure 5 includes icons for the various public interfaces of the Viewers
Package, as well as an Icon for the Viewers Package online
documentation contained in the file ViewerDoc.Tioga. We can cause
this documentation to be displayed using the same method as we did
to display the whiteboards, namely by simply moving the cursor into
the icon and clicking, t9

The Tioga Editor and Document Preparation System

The text viewer that appears in the left-hand column of the display in
Figure 6 is the on-line documentation for the viewer package itself, in
the form of a Tioga document. Tioga is both the editor for Cedar
programs as well as its document preparation system, t l ° In Tioga, a
document is a tree structure of nodes rather than a list of paragraphs

t8 The system will automatically obtain the necessary information from the
corresponding data base, which is stored on a file-server. All of this happens reasonably
quickly (a few seconds).

t9 We have placed a great deal of emphasis in the design of Cedar on uniformity of
command interface. "What is important about a standard user interface package is that
the user be able to confidently predict the general manner of interaction with a program
that uses the package, even though he hasn't experienced it yet; and that by and large.
the user will he right. This has been called the Law of Least Astonishment" [4].

tl0 The Viewers Package documentation shown in Figure 6, as well as all Cedar
documentation, was prepared using the Tioga editor, as was the paper that you are now
reading. When hardopy is needed, the Tioga typesetter (represented by the printer icon
shown at the bottom of Figure 6) is used to generate high quality hardcopy from the
document and send it to the corresponding printer.

183

so that a hierarchical structure can be explicitly represented. Successive
levels correspond to greater levels of detail, and the viewer of a Tioga
document can be instructed to suppress the display of all nodes deeper
than a certain level. For example, in Figure 6 only the top level of
nodes are shown, thus effectively providing a table of contents.

. ' 22 ; : . - ; : -L - .~ ' 2 ~7 '~ ' d ~ : "~2 "
F t t ~ ' ~ ' l ~ r M°~Lev¢l' [¢~lL'~i$ *'~eV'U T h e V i e w e r s C o m p o n e n t o f Cedar

tat@r-Office Memora~du~

p l , d e l i u d Viewer CI,,SeS A n d there > morn

Figure 6: Online documentation for the Viewers Window Package

In combination with scrolling, the use of levels in Tioga makes it easy
for the user to browse through a document or program and quickly
find the part that interests him. For example, let's scroll to the section
entitled "PreDefinedViewer Classes ' 'all and click the MoreLevels
menu button at the top of the viewerf112 This allows us to see one
more level of detail, the titles of subsections, as shown in Figure 7.

~ l e ~ ~ G~t ~etlmp] Pr~vVile ~ ~ v e Tame split P I ~ Levels C h ~ g e L o g Reds F r o z e I / J w ~ :
IF lnd Word Def Po~iUon Norm~,hze P re vP l~e R e ~ l ~ t I

r l r s tL~e lOnlY FewerLevels The View~
Predefined Viewer Classes

Li~t ~a below t~ a ~ t ot viewer c l ~ tot c l ient u ~ w i t , implem~ta t ion* provided in the C~ta , The Viewe~
t~m me.

I I !~togrammer that thl
B u t t s a s application, while

a ~ l i c ~ t l o n s

viewer; a r ~ t s n g u
L a l ~ l s u ~ r aisplay. A vi

interact with the d,
R ~ I ~ app l i~ t ions s~lws

sna has ~val]l~]e
T e x t • y be m 'l application. I t is o

system p ~ v i d ~ an
examl~t~ ot u~te ,
consult ~he i , ter lac

I - -
Implementa t ion Guide l ines

The I~,x~=L~l u ~ and va r i ab l~ in m v t e w ~ w e ~ design~-et to s u p ~ r l a !:~r tieubtr Style ot
im l t. Egsny ~ the p r o e e d u ~ and vmriabl~ w, i : ~ i t i c s l l y to
help ~ l v e ~ e g ~ a l p c~ ~ o e o n ~ n e y ~ u ~ r i n m r s c t i ~ Impxememors a ~ no1 requiroa
to use t h ~ procedure , ha l they shOUld only ~p~r t t a m them w h ~ they have g0~d r ~ m n s

The ~e~ way to write a u ~ a p p l i ~ l i ~ that ~ V i e w m is to t i m w r i~ s appt i~ t ions package
acctt:*tble to e l i o t p rognms ann then maXe a th in v e n ~ over i t t ~ u ~ r s I t / s ~ p t i ~ to tailor
y o u r i m p l e m e n ~ f i ~ to tile u ~ i n t e r f a ~ but this lemptation should be ~ i s t e a 1/o matter how
u ~ r - o t i ~ t e a your t~lrogmm is ~ m e u ~ r ~ e Oay wil l wafll to write a program ha u ~ you
t] ~ o l i ~ t i ~ d i m l y I t i# be%q t i l t ; you prepa~ Jo h l even ua y now.

~ e ~ a ~ tour dill*rant ways that a ~ ~ a unc on n your prot am ~ u a be nvoxed
n o l i t i ~ n o n of an ~ r eveal through the 1/otit¥thr~ a @11 on a p~-~etined tunctlon in the Viewe~ ::i
cla.~ (~ c h as ~ t . get. and ~ v e l . invogation ~h~ugh a bulton ~ m ~ u i l ~ on the viewe a ~ d t i!
orient cal l on aa i n ~ l a ~ you ex10~q. I t yon ~ more than one oi l h ~ ~t ths to invoxe ~" f a n , i o n ~i

t y o a s h o u l a t ~ a ~ a o l u t e l y ~ i n t h a l l h e y a l l n a v e e x a ~ l y l h e ~ m e ~ m a n ~ Tne t ~a way p a p I ' "
this is to have t h i n pr tecdum. Thus the Not i fMPm that h a n a l ~ sl:eClal u ~ t

I a ~ i ~ should d o n o m o ~ than g s t h ~ paramete n ann dt~pateh to p ~ ' d a r ~ that a • defined m an 1c~*
interim;* ex~ot~ea by your 1 ~ ~m, The ~ m e should be true ot proce~ur~ that a ~ invogea with
b u n o ~ and menns £efml t lon snd

The l u n e t i ~ ' ~ t e ' sad "amr0y' u e sP,~tTial tu i t ions ia the Viewers world All ol the } '~snsgement
~ a t i ~ and nest r u~um that i t n ~ r M t o t . Imrt ~ a V ewers cat. should h a p ~ n in t a r clnss,s
Inl t~roc ann 17~'t my p ~ , In p t , t i c , l~r it i s very important tha, all ~ Ore = e nu constr.ction, [~ I[~ :~
~ - v i e w ~ ~ t i ~ ann private data i n i t i t l i ~ t i ~ hal~en in t;le InitProc. TMS allows the Viewers CJ paclage to c r ~ t e ann a~tyoy instgn ~ ol a class wit;~ont having 1o Xnow about i n t ~ t a ~ exp~rtea
bY the cht-~'s l m p l m ~ m t t o m This Is imlx~ztnnt s i n ~ opening a a~Xlop ~ e t i m ~ r e q u i r e the
~ * t e t t l ~ of a v i e w ~ tht aa a ~ t ~ y e ~ . A l l that the Viewers package ~ n do is cal l
Vie w ~ C ~ t e Viewer[viewer F l a y s . into: [~ m e : v iew~Name]] and hope that this is suff icient
to ertmte and i n i t i a l i ~ the v i e w s . A p p l i ~ t i ~ t~ l$ shoula c ~ t e their own viewer's Grass jus t
the~ i tPr~, even he~ ~ never mo~ hun one t I / t

[S inu t t r ly , ViewerOps,De~myViewe~viewer] Should t~e a l l the Viewe~ paogage n ~ s Io r a k e s u ~ I ~ 1< hcl"c .e 113
! at t • vlew~ c ~n u a its interns am ~ r u ~ u ~ . ~nln u interna ta
,."~u~'~ ~ , ~ g ; ~ , c ~ l ~ t'~ ~%. ~ L ~ thes&?e, , , ~e,x

M o u s e a n d K e y b o a r d I n p u t

i iilliiiiii ii i i 14I I i °'"'' ~ ' ~ ~i~i~

Figure 7: Browsing a Tioga document using level clipping to
suppress detail

all Scrolling is accomplished by moving the mouse into the scrollbar, a vertical area
at the left side of a viewer, and then clicking the mouse. The scrollbar is visible in
Figure 7.

Clicking the MoreLevels menu button again would show yet further
detail, i.e., the contents of the subsections entitled Buttons, Containers,
etc. Now let's scroll back to the beginning of the document and I'll
briefly demonstrate how the Tioga editor works.

The Tioga editor allows the user to select individual characters, words,
or entire nodes or branches (a node plus all of its children). For
example, ! can select the word "environment" in the first paragraph
of the introduction (see Figure 8) by pointing at it and clicking the
middle button of the mouse. This does two things. First, it establishes
the input focus, i.e., tells the Viewers Package that any characters that
1 type should be seen and interpreted by this viewer, not by some
other viewer also waiting for input. Secondly, clicking the mouse in a
Tioga document tells the Tioga editor the location of the current
insertion point, in this case immediately following the word
"environment." Tioga indicates the current insertion point on the
display by the appearance of a blinking caret. (In Figure 8, the caret
can be seen in the third line of the first paragraph, just after the word
"over.") Basically, what all this means is that to use Tioga, you simply
point and type and the characters are inserted into the document at
the place where you pointed. Figure 8 shows the state of this document
after I pointed at the word "environment" in the second line of the
first paragraph and typed "Here I am in the process of inserting
material: the quick brown fox jumps over."

I n t r o d u c t i o n

T h e V i e w e r s w l n a o w P a c k a g e is t h e a r b i t e r of t h e u s e r i n p u t a n d d i s p l a y h a r d w a r e i n t h e Cee
p r o g r a m m i n g e n v i r o n m e n t H e r e I a m i n t h e prOCeSs of i n s e r t i n g m a t e r i a l : t h e q o i c h b l o w n tox
j u m p s over , I t p r o v i d e s t h e i l l u s i o n to t h e p r o g r a m m e r t h a t t h e r e i s t p r i v a t e d i s p l a y , mouse a n d
hey*ooard i/ '*soclat~d w i t h e a c h a p p l i c a t i o n , w h i l e a l l o w i n g t h e u s e r to s i m u l t a n e o u s l y i n t e r a c t w i t h
m a n y s u c h a p p l i c a t i o n s .

T h e bas i c ob jec t m a n i p u l a t e d b y c l i e n t p r o g r a m s a n d v i s i b l e to t h e u s e r i s t h e v i e w e r ; a
r e c t a n g u l a r a r e a w i t h a r b i t r a r y c o n t e n t s w h i c h m a y b e m a d e v i s i b l e on t h e u s e r d i sp l ay . A v i e w e r
t a k e s i t s n a m e i n t h a t i t a l l o w s the h u m a n u s e r to view a n d i n t e r a c t w i t h t h e d a t a a s soc ia t ed w i t h i
C e d a r a p p l i c a t i o n . T h e u n d e r l y i n g a p p l i c a t i o n s s o n w t r e has c o m p l e t e c on t r o l o v e r t h e d i s p l a y e d
c o n t e n t s of a v i e w e r a n d has a v a i l a b l e a r i c h u s e r i n t e r l a c e | o r u s e r i npu t , T h e screen pos i t ion anq
s i z e ot a v i e w e r m a y be m o a i t l e d by t h e u s e r as w e l l as u n d e r p r o g r a m control .

T h i s t t o c u m e n t a t i o n is w r i t t e n to t t h e p ~ g r a m m e r i n t e n d i n g to use t h e V i e w e r s W i n d o w Pack~
to b u i l d a n e w a p p l i c a t i o n . I t i s o r g a n i s e d a long t h e b road a r e a s of f u n c t i o n a l i t y t h a t t h e V i e w e r s
system p r o v i d e s a n d a t t e m p t s to e x p l a i n d e s i g n t h e o r y a n d some p ra~mat i c s . F o r examples oI u s a
see t h e r e t e r e n c e s w i t h i n e a c h Section, a n d tor e x a c t d e t a i l s c ons u l t t h e i n t e r l a c e s d i r e c t l y . On~
p o i n t of n o t a t i o n : u s e d t h r o u g h o u t t h i s d o c u m e n t . ¢lical r e t e r s to a p r o g r a m c a l l i n g t h e V i e w e r s

Figure g: Inserting characters into a Tioga document

Commands can be given to Tioga using various control keys, e.g.,
typing a character while the CTRL key is depressed. For example, I'll
undo the insertion I just made with a single keystroke. This ability to
undo editing operations allows the user to recover from mistakes.

Another command that I can give to Tioga is to change the way
characters appear by changing their looks. For example, let me
emphasize a sentence of this document to draw it to your attention by
making it appear in a larger font and underlined (see Figure 9).

The sentence that ! underlined makes an important point: users can
and do make heavy use of parallelism in Cedar. It enables them to
start one task before another has finished, and to switch back and
forth among several tasks, e.g., editing, compiling, reading mail. t13

~f12 The advanced user can perform this same operation with a single action by holding
down the SHIFT key while scrolling. This is an example of our concern for an efficient
interface for experts. Many systems that boast of being extremely easy to use have the
drawback that they do not allow the experienced user to become much more proficient
with the system than the novice user. For experts, the desire for common operations to
require a minimum of effort can be more important than the desire for the greatest
possible simplicity in the user interface.

~13 To facilitate this parallelism, we have pursued in the design of the Cedar user
interface what might be called the Principle of Non-Preemption: "Individual interactive
programs operate in a non-intrusive manner with respect to the user's activities. The
system does not usurp the attention and prerogatives of the user" [4]. This is especially
important in an environment such as ours where the use of personal machines encourages
using the time when the user is thinking or the time between keystrokes by performing
various background tasks, e.g.. sending and receiving mail. printing, recompilation, and
database maintenance. Such activity loses a lot of its utility and attractiveness if the user
is continually forced to deal with unexpected interrupts from these background tasks.

184

~a

The Viewers Window Package

D i s c l a i m e r ~ "
C)*ss*~

This docum~qtl is cur~nfly in progress and hen~ is incomplete (as witnessed by a number of ,~sa
sac one no ye wr en I relleCts the s a e of the V iewe~ package for Cedar version 4,0. You
m a y be able to lind a morn re~nt version on line go]<CedarViewersyViewers>ViewerDoct oga.

I n t r o d u c t i o n

The Viewers Window]Package is the arbiter ol the user imaut a n d di~lalay hardwa~ in the C e d a r
Drozramm re env ronmen]-;ere I am in the Vrocess of inserti l te charactel=, o v ' d t
' u s i o t o t h e m e r t h a t t h e r e is ' v d ' a o u s e a n o a d

r i n t e r a c t w a t h m a n y s u c n a o v i l c a t t o n s
The basic object manipulated by client programs and visible to the user is the viewer; a

r6c angu at am w h arc rary contents which may be made visible on the user display, A viewer
t ak~ its name in that it MIOWS the h u m a n user to vigw and interact with the data associated with a
C e d a r a p p ca on. Tile underlying applications sottware lute complete control over the diSl~layed
contents at a viewer a n d has avai lable a rich user interface for ~ e r input, The screen position and ~A
size ot a viewer may be modUied by are user as well a s u n d e r program control.

Th s ¢tocumentation is written for the programmer intending to use t~te Viewers Window Package
to build a new application. I t is organised along the b r ~ d areas of funct ional i ty ~hat tile Viewers in
sys em prov dec and attempts to explain d~ign theory and ~me pragmatics, FOr examples of usage,
see tile r e t e r e n ~ within each section, and lot exact details consult the in te r lace d i r t i l y . One
point ot notation: used througilout this document, client relers to a program catting the Viewers

Figure 9: Changing fonts

We aren't going to be needing this viewer, so let's destroy it using the
Destroy menu button which is contained in menu that is hidden under
the caption. We do this by moving the mouse into the caption area of
the viewer, which causes the caption menu to be displayed as shown
in Figure 10. Notice that the Destroy button has a line through it.
This indicates that the button is guarded. Guarded buttons must be
clicked twice in a short time interval to take effectf114 This is to guard
against the user's inadvertent destruction of useful work. For example,
the first time any edits are made to a Tioga document, the Destroy
button automatically becomes guarded. If we were to go ahead and
destroy this viewer anyway, a new icon labelled UnsavedDocuments
List would be created. If I were to open this icon, I would see: "The
following files were edited but not saved. They may still be restored
with edits intact simply by loading them." i.e., ! could still get my
edits back if I really wanted them.

Dcc~z;y Adjust Top < > Grow Close
Clear R-ese~ Get Getlrnpl PrevFUe ~ Save Time Split places Levels ChangeLog
Find Word Def PosiUon Norrnolize PrevPlaCe Re~elect
F i r s t L e v e l O n l y M o r e L e v e B F e w e r L e v e l s AllLeveI~

Inter-Office Memorandum

To Cedar Interest Date December 21, 1982

From Scott McGregor LocaUon Polo Alto

Subjec t The Viewers W i n d o w Package O r g a n i z a u o n PARC/ISL

XEROX

Filed on: [Indigo](Cede~r>Documentation>ViewerDoc,Tloga and ViewerDoc.Press,

DocBments: [Indigo]<Cedaz>ViewersYViewersxlf, ~s exported by the CedAr boo~ file.

The Viewers Window Paokage

Figure 10: The Destroy menu button is guarded to prevent accidents

Such touches as undoing, guarded buttons, and the ability to recover
destroyed edits, are what some might describe as frills. However, we
believe that they contribute a surprising amount to programmer
productivity. They allow the user to move ahead quickly with the
confidence that he will be able either to avoid disaster or to recover
from it. We have placed a great deal of emphasis on them in the
design of Cedar.

t14 The first click removes the guard. If a second click does not occur within a
specified interval (about five seconds), the guard is restored. We feel that this interface
is preferable to having the system enter into a confirmation mode; the latter would
violate our principal of non-preemption.

The UserExecutive

An increasing number o f users of Cedar are non-programmers; they
use Cedar to prepare documents and read and send mail. However,
Cedar is primarily a programming environment. So let us now focus
our attention on the programming aspect o f Cedar. To do this, I'll
open up a UserExecutive. Notice that I said a UserExecutive, not the
UserExecutive. Consistent with our philosophy of providing
parallelism, there can be several instances o f the executive, each with
its own state, and performing its own operations.

Each instance o f an executive is associated with a viewer called a Work
Area through which the user interacts. Commands are typed to the
executive by typing to its viewer, and its output is displayed in the
same viewer. At this point in the demonstration, there is only one
instance o f the executive; it is associated with the icon at the lower
right of Figure 6 that looks like a scroll and is labelled "A: Executive."
I'll open this icon in the usual way, and then move the mouse into
the resulting viewer and click it. The executive is now listening to me,
i.e., it will see the characters that I type.

The UserExecutive implements various standard executive functions
such as accessing the directory system, compiling, binding, loading,
and running programs. Each interaction with the UserExecutive is
called an event, and consists of a command name, followed by any
parameters. The user can request explanatory information about a
command or its arguments by typing "?". For example,

&7 run?
Run Load and Start the named programs.

The "?" indicates that I want to see more information about the
preceding subjecL in this case. the run command. The UserExec tells
me that this command is used for loading and starting programs. I'll
use the run command to run the program Watch, which is a
performance monitoring tool that periodically samples and displays
the words allocated, cpu load, and page faults, f15

&8 run watcch
watcch -> watch
Loaded and started: watch.bcd

I misspelled the name of the program to be run. In most systems, this
would cause some sort o f a FileNotFound error to occur. Instead, the
Cedar spelling correcter was invoked, and given the name "watcch"
and the context "a file to be run," quickly produced a file which was
reasonably close in spelling. This automatic correction of "watcch" to
"watch" is an example of what we call DWIM, short for
Do-What-I-Mean. The Cedar DWIM facility is patterned after the
lnterlisp DWIM facility in philosophy and style [13].

The UserExec has loaded and started the Watch program, which
created an icon for the Watch tool. !'11 open the Watch icon, and we'll
observe the Watch tool in action as 1 execute another event in the
UserExec (see Figure 11).

The Interpreter

One of the valuable lessons we learned from Interlisp and Smalltalk
was that the availability o f an interpreter greatly facilitates debugging
and testing, even when the programs being debugged are themselves

"t"15 Since Cedar programs are often written in expectation of production use of the
program, performance monitoring and tuning is an important issue. The Watch tool is
just one example of a number of such tools available in Cedar. For example, a much
more elaborate and precise performance tool is the Cedar Spy, developed by John
Maxwell. "With the Spy, the programmer can see which procedures are consuming
CPU cycles, which are causing page faults, which are using the allocator, or which are
calling a particular procedure. When the programmer narrows his focus to just one
process, the Spy will tell him where that process is spending its time. where it is waiting
on page faults, where it is waiting on monitor locks, where it is waiting on condition
variables, and when it is preempted by other processes" [9].

185

Figure 11: The Watch Tool moni tors program activity

totally compi led , f16 Thus, the Cedar in terpreter is an impor tan t and
integral par t o f the Cedar envi ronment , despite the fact that Cedar is
a compi le r -or ien ted language.

To show you how the Cedar in terpreter works, let 's in terpret some
C e d a r expressions, l ' l l create an in terpreter Work Area by cl icking the
New m e n u but ton at the top o f Work Area A. (This menu can be
seen in F igure 15.)

The Ceda r language includes the data types found in mos t modern
p r o g r a m m i n g languages, such as integers, reals, booleans, characters,
arrays, pointers, records, etc.

For example ,

& 1 ~ - 3 + 4
7
&2 *" ABS[1.414 * 1.414 - 2.0] < .001
TRUE

The first event, &l <- 3 + 4, really means assign the value o f 3 + 4
to the var iable & l , and 1 can refer to this value in later expressions.
For example , let 's mul t ip ly i t by 1.4:

&3 *- &l * 1.4
9.8

The Ceda r in terpre ter also al lows me to perform operat ions on types

as well as values. For example , typing ? following an expression will
show the type o f the value o f the express ionJ 17

& 4 *- 3.2?
is of type REAL
&5 *- 'X?
is of type CHAR
&6 *- Time.Current?
is of type PROC RETURNS [time: System.GreenwichMeanTime]

In the Ceda r language, "." is used to denote field extraction. For
example , x.y means the field o f x whose name is y. In this case, Time
is the name o f an interface, and C u r r e n t names a procedure in that
interface. An interface is l ike a contract between implementors and

i'16 Actually, all Smalltalk expressions that are input by the user are compiled before
execution, although it is not clear that Smalltalk users are (or need to be) aware of this
operation. The important point is the ability to create and execute program fragments in
a specified dynamic context. Whether this is done via a separate interpreter as is the
case with Interlisp, or by compiling each expression as Smalltalk does. is simply an
implementation issue.

"t"17 Note that we are not just talking about primitive, built-in data types, such as
integer, boolean, string, etc. Cedar encourages the programmer to augment the collection
of predefined types by constructing new types defined in terms of built-in or previously
constructed types. In a typical Cedar system, there may be over a thousand such types.
Thus, for the purposes of debugging, knowing that a particular object is a pointer to a
word containing all O's may not be anywhere near as informative as finding out that
the object in question is of type REF Fop, rather than REF Baz. where both Fop and
Baz happen to be synonyms for the type INTEGER.

clients. I t declares that a procedure of a specified name, such as
Cur ren t , takes certain a rguments and returns certain results. The Cedar
compi le r can then m a k e sure tha t any programs that impor t (use) this
interface conform to its specifications. The compi le r also checks tha t
the implemen ta t ion modu le conforms to the same specifications, t18

Let 's call this procedure. It takes no arguments .

&7 *- Time.Current[]
Thursday, September 1, 1983 12:33:21 pm

Its value is o f type:

& 8 *- &? t19

is of type System.GreenwichMeanTime

The reason that the value of Time,Current in event number 7 prints
so nicely as a day, date, and time, rather than as a 32 bit quantity, is
that a PrintProc has been associated with the type
System.GreenwichMeanTime. A PrintProc is a procedure that
provides a more desirable way of presenting an object of a certain
type, rather than simply printing its data structure using the default
methods. The PrintProc facility is quite useful for dealing with large
and complicated data structures such as viewers, documents, and
streams, where the user typically just wants to be able to identify the
object, rather than seeing its actual structure. Cedar includes a number
of PrintProcs for just this purpose. In addition, individual users may
define new PrintProcs for their own types.

Automatic Storage Management and REFs

In the early stages of planning for Cedar, one of the features that
received the highest priority was automatic storage management - a
garbage collector. The Cedar language was extended to include a data
type called a REF, which is a pointer to an object in collectible storage.
In addition to REFs to particular types, such as REF REAL, REF BOOL.
REF PROCEDURE, etc., the Cedar language includes a generic REF type,
REF ANY. f20 Atoms, which are very similar to Lisp atoms, and Lists
are also examples of REFS. 1"21

For example, let's make a list of some of the values that we just
computed.

&9 *- LIST[&1, &2, &3, &7]
(t7, "tTRUE, *9.8, *Thursday, September 1, 1983 12:33:21 pm)
& l O *- &?
is of type LIST OF REF ANY

Since each o f these objects is o f a different type, the type o f the value
o f even t 9 is LIST OF REF ANY. Note that the first e l emen t is really a
REE INT, the second a REF BOOL, the third a REF REAL, etc. In o ther
words, the type o f &9.first, the first e l ement o f this list, is REF ANY,
bu t the type o f the referent o f this element, &9.first t , is INT.

Manipulating Lists

The List interface includes a variety o f procedures for man ipu la t ing
lists, such as Append, Reverse, Remove, Union, and Intersection.

t18 The notion of abstraction mechanisms and the explicit notion of interface was an
important item in our original catalogue of programming environment capabilities [4]:
"Abstraction mechanisms are important because they make explicit the logical
dependencies of one part of a program on another, while concealing the implementation
choices irrelevant to the communication between parts. Thus, these mechanisms enable
the ability to factor the development, debugging, testing, documentation, understanding,
and maintenance of programs into manageable pieces, while leaving individual
programmers the appropriate freedom to design those pieces" [4]. The author believes
that the abstract notion of an interface is one of the great strengths of the Mesa
programming language. However, the need to specify interfaces in advance can also be
cited as a weakness of the Mesa approach. Certainly, the present need for vast
recompilations whenever a fundamental interface is changed, even in a backwards
compatible fashion, is a weakness, but one that certainly can be reduced and maybe
even eliminated (for example, by maintaining version stamps at the interface item level,
rather than at the interface module level as is currently done).

t19 The value of the variable & is the value of the last event execute, i.e., in this case
& and &7 have the same value. ~'20, "1"21 (see next page)

186

Le t ' s t ry t h e p r o c e d u r e R e v e r s e on the list c o n s t r u c t e d in e v e n t 9.

&11 *- L ist .Revers[&]
Revers -> Reverse ?

1 m i s s p e l l e d t h e n a m e o f t he p r o c e d u r e caus ing an e r r o r to occur , i.e.,
t h e p r o c e d u r e R e v e r s was n o t f o u n d in t he set o f p r o c e d u r e s c o n t a i n e d
in the i n t e r f ace List. DWIM was i n v o k e d a n d s e a r c h e d t h r o u g h t he set
o f i t e m s d e c l a r e d in t he in te r face List. t22 DWIM f o u n d a p r o c e d u r e ,
R e v e r s e , w h o s e spe l l ing was p re t t y c lose to w h a t I t yped , a n d in
F i g u r e 12, is n o w wa i t ing for m e to c o n f i r m o r re jec t t he cor rec t ion ,
w h i c h l can d o v ia t he k e y b o a r d , o r by c l ick ing the Yes o r N o m e n u
b u t t o n s w h i c h h a v e b e e n a d d e d to the W o r k A r e a ' s m e n u for this
p u r p o s e . t 2 3 W h e n (a n d if) l c o n f i r m the cor rec t ion , t he c o r r e c t e d
exp re s s ion will be e v a l u a t e d .

t20 A recurring theme in our discussions of requirements for an experimental
programming environment centered around the issue of early versus late binding of
various implementation decisions. "The key property of the programming languages
used in exploratory programming systems is their emphasis on minimizing and deferring
the constraints placed on the programmer, in the interests of minimizing and deferring
the cost of making large scale program changes.... The languages make extensive use
of late binding, i.e., allowing the programmer to defer commitments as long as possible"
[12].

The addition of the type REF ANY to the Cedar-Mesa language represents an attempt
to provide for one form of late binding: use of the type REF ANY enables an
implementor to defer type checking from compile time to runtime on a case by case
basis. Note that in the Lisp programming language, every item is effectively a REF
ANY: all objects are pointers, and the type of each object can always be determined at
runtime. As a resulL certain classes of errors can remain undetected until a program is
run, perhaps even until the program is run on particular data. At the other extreme,
the Mesa programming language requires the specification of the type of each object at
compile time. Consequently, unanticipated modifications or extensions to Mesa programs
often require changes to type declarations and recompilation of interfaces and
implementation modules.

In Cedar, we wanted the best of both worlds: the flexibility of runtime (dynamic) type
checking and the reliability and performance of compile-time (static) type checking. We
hoped that by employing REF ANY in the early stages of developmenL programs could
opt for more flexibility at the expense of performance and/or runtime errors. As the
program matured, various binding decisions could be made earlier by employing specific
types where appropriate.

Another important use of REF ANY in Cedar is to enable generic programs. Since
programs can determine the type ofa REE ANY at runtime, they can operate differently
depending on the type of the object they are given. For example, the same Sort program
can be used to sort lists of integers, reals, strings, or even viewers, by selecting the
appropriate comparison algorithm based on the type of the objects being compared.
The capability provided by REF ANY is also essential for enabling object-oriented
programming. For example, streams, viewers, and ropes are all objects in Cedar whose
definition consists of a block of procedures along with a datum which contains the state
of the objecL Since the type of the datum is different for each different implementation.
for example, file streams need different information than keyboard streams, the datum
is represented as a REF ANY which the individual procedures can then interpret.

t21 A List in Cedar is a REF to a structure consisting of two fields, first and rest.
The first field contains the element of the list and the rest field the tail of the list (the
Lisp CAR and CDR). Cedar provides language support for the construction of lists (via
LIST and CONS), but no polymorphism; it is not possible to write a program that
traffics in LIST OF T without specifying T at compile time. Since most programs using
lists employ lists of specific types, the absence of polymorphism means programmers
must (re)implement for each specific type list primitives such as Reverse, Append,
Union, and Intersection. This absence of polymopthism is cited as the biggest
shortcoming of the current implementation.

t22 When we first began work on Cedar, some thought that the complexity of the
Cedar language would make it too difficult to implement any sort of automatic error
correction facility such as was available in lnterlisp. However. this very complexity turns
out to be of great benefit for error correction in Cedar expressions, because more
information is available at the time of the error than in Lisp, where all the interpreter
knows is that an identifier is unrecognized and whether it was used as a function or a
variable. For example, when the user typed List.Revers above, DWlM was called given
the identifier "Revers", the message "selection failed", and the context the List interface.
DWIM knew that it was looking for an element defined in the List interface, which
immediately narrowed the search down to 42 possible candidates. Similarly. List.Subst
is a procedure which takes three arguments: new, old. and expr. If the user types
Lisf.Subst[new: $Foo, old: $Fie, exrp: x] (misspelling the name of the third argumen0,
then DWIM only has to consider three candidates. For assignments, the type of the
target can also be used to guide the correction. For example, if x is declared to be of
type Color, where Color is an enumerated type consisting of {red, green, blue}, and
the user writes x ,- bue, then he probably means blue. whereas if x is of type {feature,
nonfeature, bug}. and the user writes x ,- bue, he probably means bug.

-:~:T" -'~;
Find Split New Stop Com!oile Eva]. Redo Set Clear Yes No

&$ + 'X I~
'X %
&6 *- Time.Current?
is of type PROC RETURNS [time: System.GreenwichMeanTime]
&? + Time.Current[]
T h u r s d a y , September 1, 1983 12:33:21 pm
&8 *- &?
is of type System.GreenwichMeanTime: TYPE = RECORD[LONG
CARDINAL]
&9 ~- LIST[&1, &2, &3, &7]
(~'7, tTRUE, t-9.8) '~Thursday) September 1, 1983 12:33:21 pro)
&lO *- &?
is of type LIST OF REF ANY
&ll ~- List.Revers[&]
Re~,er'J -> Re~,,ezae ?

A

Figure 12: C o n f i r m i n g a DWIM e r r o r co r rec t ion

&11 *- L ist .Revers[&]
Revers -> Reverse ? Yes
(tThursday, September 1, 1983 12:33:21 pm, t9.8, tTRUE, t7)

Ropes

C e d a r a lso i n c l u d e s a n o t h e r useful t y p e o f REF cal led a ROPE. A ROPE
is C e d a r ' s s t a n d a r d s t r ing type . t24 T h e i n p u t syn tax for a ROPE is a
s e q u e n c e o f c h a r a c t e r s d e l i m i t e d by " s . F o r e x a m p l e ,

& l 2 *- " th is is a rope"
" th is is a rope"
&13 *- &?
is of type ROPE

Jus t as t he Lis t i n t e r f ace p r o v i d e s o p e r a t i o n s for dea l ing wi th lists, t h e
R o p e in t e r f ace c o n t a i n s a va r i e ty o f usefu l o p e r a t i o n s on ROPES. F o r
e x a m p l e , R o p e . F i n d is a p r o c e d u r e t h a t s ea r ches o n e ROPE for t he
o c c u r r e n c e o f a n o t h e r .

&14 *- Rope.Find?
is of type PROC Is1 : ROPE, s2: ROPE, pos l : INT *- 0, case: BOOL
*- TRUE] RETURNS [INT]

T h i s tells us b o t h t he n a m e s a n d t he types o f the a r g u m e n t s t ha t
R o p e . F i n d expec ts , a n d tha t it r e t u rn s an in teger . (Th i s i n t ege r
ind ica tes t he c h a r a c t e r pos i t ion in t he first ROPE a t wh ich the s e c o n d
ROPE beg ins .) Le t ' s t ry it.

&15 *- Rope.F ind[

A t this poinL instead o f retyping the ROPE "th is is a rope" , I can
s i m p l y se lec t t h e c o r r e s p o n d i n g t ex t in e v e n t n u m b e r 12 us ing the

f23 In general, we try to give the user the choice of performing operations either via
menu or via the keyboard. The main reason for this redundancy is that if the user's
hands happen to be on the keyboard, it is more convenient to interact through that
medium rather than having to reach for the mouse. Conversely, if the user's hands are
already on the mouse, it is easier to click a menu button than to reach back to the
keyboard. The use of menus in conjunction with confirmation provides the added
benefit of allowing the system to handle gracefully the issue of typeahead and its
potential interaction with confirmation. Consider the case where the user has entered
some operation, and then typed ahead the next operation not realizing that the first
would require confirmation. The desired behavior of the system is that the user be able
to confirm without having his typeahead affected, i.e., that he not have to retype it after
confirmation. This is accomplished by requiring that the user only confirm via menu
once there has been any typeahead.

t24 A ROPE is a garbage-collectible sequence of characters. ROPEs are immutable;
the sequence of characters denoted by a ROPE never changes. Thus, ROPEs may be
shared freely among independently-wriUen applications, since no application can hand
out a ROPE and have some client free its storage or alter the characters it contains.

187

mouse, and cause the characters to be treated exactly as though they
had been typed. I can do this because this Work Area I have been
typing to as though it were s imply a glass teletype is really a full-fledged
Tioga document , and 1 can make use of any o f the facilities o f the
Tioga Edi tor when construct ing expressions to be interpreted. For
example , i f 1 hold down the SHIFT key while selecting in a Tioga
document , the selected material is displayed with a gray under l ine (as
is shown in Figure 13). Such a selection is called a source selection.

Find Split New Step Compile Eval Redo Set Clear
CARDINAL]
&9 + LIST[&I, &2, &3, &7]
(~-7) ~-TRUE) ,1.9.8, ~'Thursday, September 1, 1983 12:33:21 pro)
&10 *- &?
is of type LIST OF RE;F ANY
& l l + List.Revers[&]
Re~.er~ -> Re~.ezse ? Yes
(~vThursd<s~y, September I) 1988 12:33:21 pro))9.8) .vTRUE, .~7)
&12. ~ "this is a rope"
"this is a roEe"

is of type ROPE
&14 ~ Rope.Find?
is of type PROC [sl: ROPE, s2: ROPE, posl: INT ~ 0~ case: BOOL
TRUE] RETURNS [INT]
&IS + Rope.Find~

i iiiii::~ ''''~ '":~::i i i ~i'.~ "" ::: ii

Figure 13: Copying displayed characters instead of typing them

W h e n l release the SHIFT key, this source selection will be co~ied to
the cur rent insert ion point, i.e., the place where the caret is. t 2~

& 1 5 ,- R o p e . F i n d [" t h i s is a r o p e " , " i s a"]
5

The value 5 indicates that the second ROPE begins at character posit ion
5 in the first ROPE.

This gives you a general overview of the Cedar interpreter. Now let's
try using the Cedar system in earnest.

Tracking Down a Bug

Earl ier when I typed Rope.Find? in event 14, the system s imply told
me the names and types o f the a rguments and return values. | thought
tha t the system was also supposed to show me the comments associated
with the procedure Find in the R o p e interface, so that I would know
what the various a rguments and the return value meant . Let 's create
a viewer on this interface and see i f there are any comments associated
with this procedure. I select R o p e . F i n d in my Work Area, and then
click the O p e n menu but ton in the message area at the top of the
screen. This tells the Viewers Package to create a new viewer, load the
file Rope .mesa into this viewer, and then search for the defini t ion of
the procedure Find, which it has f inished doing in Figure 14.

As you can see, there are comments here. Let 's try to find ou t why
they weren ' t shown when i typed "?". To do this, 1 am going to p lant
a b reakpoin t in the code tha t implements the ? feature of the
UserExecut ive. First, I create a viewer on the corresponding source

t"25 This feature is tremendously useful. It greatly increases the bandwidth of the user's
interaction with the system. It also enables us to use long and descriptive identifiers,
such as IO.CreateEditedStream, UserExec.FindExecFromViewer, and
ViewerTools.GetSelectionContents, even though many of our users are not fast typists.
Such long identifiers are tolerable because they rarely have to be typed, but usually can
be copied from somewhere else on the screen, e.g., froth a viewer on the interface that
defines them. (Note that having to read long identifiers in programs is not a burden
but an asset: the name contains so much information it is in effect a form of
documentation.)

Figure 14: Access to program sources provides onl ine documenta t ion

file, scroll to the appropr ia te location, and then select the place where
I want the b reakpoin t inserted, t26 I then plant the breakpoin t by
cl icking the Set menu but ton in my Work Area. t27

& l 6 SetBreak OserExecMisclmpl.mesa 13897 Break # 1 set.
Break # 1 in UserExecMisclmpl .Pr intDeclFromSource (source:
13891)

pattern *- TiogaOps.CreateSimplePattern[target] ; -- creates a
pattern for the search.

The b reakpo in t has been set. t28 The system provides feedback by
d isp lay ing in my Work Area the cor responding l ine of source text with
the location o f the b reakpoin t under l ined, as well as by under l in ing
the cor responding location in the source viewer (in Figure 15, the
bo t tom viewer in the left column).

Now let 's reexecute Rope .F ind? . I can do this by s imply selecting
anywhere inside of the corresponding event in the Work Area and
c l icking the R e d o m e n u button. The UserExecut ive mainta ins a history
o f the events tha t have been executed, t29 It uses this history list to
f ind the even t cor responding to my selection and reexecute it. t3°

"t"26 The reader may wonder how I knew where to place the breakpoint. In this
particular case, 1 happen to be familiar with the internal workings of the UserExecutive.
However, it is not at all uncommon for Cedar users, especially experienced ones, to
poke around in other people's code, planting breakpoints, and examining data. This
behavior is facilitated by the structuring of the source files that Tioga enables, and by
the use of long, suggestive names. As a result, it is not uncommon for a bug report not
only to describe the symptom, but to identify the offending line of code.

"1"27 Clicking the Set menu button causes an appropriate command line to be constructed
and input to the UserExecutive, rather than executing the operation directly. This
technique provides the user with a record of all of his interactions with the executive
and enables him to examine or replay them at some later point.

t28 Setting a break point involves finding the place in the object (compiled) code that
corresponds to the indicated location in the source, and then inserting a special
instruction that will invoke the breakpoint machinery. The Cedar compiler facilitates
this process by constructing as a by-product of compilation a table that contains for
each statement the mapping from the object locations to the corresponding source
location. However, most users are unaware of this process, and simply think of and
treat the source file as the program. Cedar goes to great lengths to encourage this model.

"t"29 The notion of a history list and facilities for manipulating it came from lnteriisp.
We have not yet implemented the notion of Undo as applied to events that Interlisp
provides, partly because it is harder to capture all of the side effects of an operation in
a language such as Cedar, and partly because other tasks were given higher priority.

"1"30 The user can also reexecute events by selecting the characters that were originally
typed while holding the SHIFT key down. as was done in event 15. The principal
convenience of the REDO menu button is (a) the user can simply select anywhere in
the event, and (b) multiple events can be reexecuted by selecting a range that spans the
desired events.

188

& 1 7 Redo 14
>*- Rope.Find?
is of type
Break # 1 in UserExecMisclmpI.PrintDeclFromSource
computat ion suspended, switching to Action Area C...

(and down below a new Work Area pops up in which appears:)

Act ion # 1 (kind: break, process: 173B) (from Work Area B)
Break # 1 in UserExecMisc lmpI .Pr in tDec lFromSource
pat tern *- T iogaOps.CreateSimplePat tern[target] ; -- creates a
pattern for the search.

. +PI '." ~,+b~+P;{ ,' ,

1 1 ~ * = +

. l . o . . , ~ l , . . . t , , 3 * o . ¢ . t o o ] { , . T] +

I I I I I I I r H f l l ~

^
I ~ l , s ~ ^ m , . M a , ~ m m h i . I . I

I , , u , . . + <a i ^ + . , + m . l ° + = m * . = . + + p " + I n) , I

I ++:': ']:~£".!~:~ I , ~ ' [hi ,

Figure 15: Hitting a breakpoint

Breakpoints and Action Areas

Whenever a breakpoint is encountered in Cedar, the corresponding
process is suspended so that the user can examine the state of the
computation. We have found it useful for these interactions to take
place in an entirely separate Work Area called an Action Area. T31 In
Figure 15 we see that a new Action Area has been created. This Action
Area tells me that I am at a breakpoint that arose out o f an operation
in Work Area B. It also tells me that the breakpoint is in the procedure
P r in tDec lF romSource , and shows me the line of code in which the
breakpoint occurred.

The first thing I want to do in this breakpoint is to examine the
arguments to the procedure Pr in tDec lFromSource . To do this, I click
the S h o w F r a m e menu button in my Action Area.

& 1 ShowFrame args UserExecMisc lmpI .Pr in tDec lFromSource
A- target: " F i n d \ n " , T32

file: "Rope. mesa ",
e x e c : {UserExecHand le : " B " } t33

The debugger tells me that this procedure, P r in tDec lFromSource , has
three arguments, target , file, and exec . The values for file and exec
are ok, but the value o f t a rge t should be "Find" rather than " F i n d \ n " .
Let's see if this is the only problem, i.e., if t a rge t were "Find," would
the comments be printed? i'll reset ta rget using the interpreter.

&2 *- target *- "F ind"
"F ind"

"1"31 This method also supports the Principle of Non-Preemption espoused in footnote
13. The user is not required to deal with this action at this time. He can continue editing
documents, create and interact with other executives, read his mail, etc., and this action
will wait for him. Another benefit of separate Action Areas is that it enables the user
to keep track of the flow of control if another action occurs while pursuing this one.

f32 ',n is how Cedar prints carriage-return when it appears as data.

t"33 The printing of UserExec handles is another example of the use of PrintProcs.
The actual handle is a fairly complicated data structure.

Now 1"11 allow the computat ion to continue by clicking the Proceed
menu button, and we'll see if the comments from the Rope interface
are in fact printed in Work Area B above.

& 3 Proceed
p roceeded Act ion # 1, return ing to Work Area B

(and in Work Area B above:)

PROC [s l , S2: ROPE, p o s l : INT ~- 0, case: BOOL *- TRUE] RETURNS
[INT];

-- like Index, returns posit ion in s l where s2 occurs (starts
looking at p o s l)

-- returns -1 if not found
-- case = > case of characters is signif icant

and sure enough, there are the comments.

Having identified the nature of the problem, now we must find out
the cause - why is the wrong value being given for ta rget in the first
place? Let's redo Rope .F ind? again.

& 1 8 Redo 17
>*- R o p e . F i n d ?
is of type
Break # 1 in UserExecMisclmp/.PrintDec/FromSource
computat ion suspended, switching to Action Area C...

and we are back at the breakpoint. Now I'll use the WalkStack menu
button to climb the call stack. Each time we click the WalkStack
menu button, we climb the call stack one frame.

& 4 WalkStack UserExecMethods lmpI .He lp

Now we are at the frame corresponding to the procedure that called
P r in tDec lF romSource . I 'd like to look at the source code
corresponding to this call. I click the S o u r c e menu button, and the
system will find the source and display it in a viewer on the left. T34

& 5 Source userexecmethods impl .mesa 3822
IF NOT UserExecPr ivate .Pr in tDec lFromSource[target : target, file:
f i leName, exec: exec] THEN target ~- NIL; -- to indicate that it didnt
f ind it in file

,, d, ,;op,~

*Y ~I. ?°'

,=,

Figure 16: The Source command finds the location in the source file

The underlined location in the viewer on the left in Figure 16 is the
point in the procedure Ose rExecMethods lmpI .He lp that corresponds
to where the computat ion is right now. i.e., the statement from which
P r i n t D e c l F r o m S o u r c e was called. Notice that immediately before this
s tatement is the expression: ta rge t *- Ro p e .S u b s t r [b a se : expr . rope ,
start: i + 1, Ion: R o p e . k e n g t h [e x p r . r o p e] - i - 1]. This expression

"{'34 This operation involves using the compiler's statement map to perform the inverse
mapping from that of planting breakpoints, namely given a location in object code, find
the corresponding location in the source. If the source file is not on the user's local
disk, but is part of the released system, i.e., is contained in the version map (see footnote
4), the file will be automatically obtained from a file server.

189

uses the procedure Rope.Substr to compute target as the substnng
of expr.rope that is len characters long, and begins at position start.
We already determined (in the previous breakpoint) that the value of
target at this point is the ROPE "F ind\n" , instead of the ROPE "Find."
Let's find out why this is the case by examining the arguments specified
in the call to Rope.Substr. First, we'll find out the value of the
argument named base by evaluating the expression expr.rope. We
can do this by simply pointing at the expression in the source viewer
while holding down the SHIFT key, thereby causing the characters to
be cop ied into the in terpre ter Work Area, the same as we did earlier,
even though in this case we are copying characters from one viewer
into another .

&6 *- expr.rope
"Rope.F ind\n"

That ' s wha t we expected. Similarly, let 's check the value o f s tar t , the
s tar t ing posi t ion for the substr ing, and the value o f len, the length of
the substf ing.

& 7 * - i + 1
5
& 8 *- Rope.Length[expr.rope] - i - 1
5

Here is the problem, an off-by-one bug. I f we don ' t want the \ n to
be included, there should only be four characters in the substring,
ins tead o f five. In o ther words, the length a rgument should be the
length o f the ent i re ROPE, minus the start position, minus 1 (so as not
to inc lude the last character), i.e., R o p e . L e n g t h [e x p r . r o p e] - (i ÷ 1)
- 1. Let 's m a k e tha t change in the source.

I m a k e the edi t using Tioga, and then click the C h a n g e L o g menu
but ton. This automat ica l ly constructs a change log entry (see Figure
17) con ta in ing my name, the date, and a list o f those i tems that have
been changed. It also provides a space for me to fill in a commen t
descr ib ing each change. I fill in the comments field, and then save the
file using the S a v e m e n u button.

viewer: ViewerC"lo~ses,Viewer;
p a n e r n : TiogaOps,Patmrn;
s~t, end: TiogaOps,LocaUon;
found, lnllne: BOOL;

s~ream: IO,STR ZXM;
~Rus~I~ {dec ~ uoo~rloLz[Alora.OetProp[a~om: fileA~om, prop: SEoot]]};
I t I[:IOC # ~IL TnZ~ ~ULL

Clear P,~ae,t- Get G e n m p l P revFUe ~ Save Time Sp l i t Places L e v e l s C h a n g e L o g
F i n d Word D~f POSIUon Norma l i ze ProvPloce Rese lec t
F i r s t L e v e l O n l y M o r e L e v e l s F e w e r L e v e l s AULevels

E d ~ t ~ t o n lVI~.v 24~ 1983 18:28 ~ , b ~ T e ~ t ~ l ~
c h ~ g ~ d ¢ddl ~o ~ t T o k e n m eacd l~ecomple te ~ u s e / D P t ~ c r ~ t h e r ~han T o k e n t ~ c b e c a u s e el" t)&
heroes conz~ning - , e,K, Hotning ~ecl ~vp~n£ L a r c h - H E S C and g o t "No match"

ch~nge.~ to: Escape
Edited on Sep~inbel 11 19BI 1~:5l pro, by T e l ~ l m a n

~h~ges ~0: Help~ 4

Figure 17: Automat ic Change Log main tenance

Now let 's go back to the Action Area on the right, and since we are
f inished with this problem, let 's jus t abort the action and control will
re turn to the Work Area from which the action originated.

Electronic Mail

The next th ing I want to do is to fix a bug that was repor ted to me
in a message. As I men t ioned earlier, the mail box shaped icon in the
lower r ight c o m e r o f the screen (see Figure 1) is my Walnu t Control
Panel. r l l open it now. As the flag on the mail box icon indicated, the
W a l n u t Cont ro l Panel tells me tha t I have new mail . I click the
NewMai l m e n u but ton in the W a l n u t Control Panel to retr ieve these
messages from the mail server. These messages will ini t ial ly be placed

in my Active message set, represented by the icon tha t looks l ike a
stack o f envelopes. 1'11 open my Active messages and we will be able
to see my new mail . t35

.... ~ , o

F igure 18: The W a l n u t Mail System; Enter ing a message into my
reminder system

The messages m a r k e d with ? (see F igure 18) are the ones that I haven ' t
read yet. Messages regarding events I want to be sure not to forget,
such as a talk or meet ing, 1 can enter into my personal
c a l e n d a r / r e m i n d e r system by s imply cl icking the Remind m e n u but ton
on the cor responding message as shown in Figure 18. The R e m i n d e r
system obta ins the t ime and date for the corresponding event from
the message itself, t36 and when the corresponding t ime rolls around,
a b l ink ing icon will be automat ical ly displayed on my screen (as shown
in F igure 19). I f I open this r eminder icon, the viewer will contain
this message, t37

Messages tha t I want to save so that I can refer to them later I
f requent ly sort into var ious categories which I have created cal led
message sets. I have abou t thirty o f these categories and can add more
whenever I need them. My current message sets are shown in the
W a l n u t Cont ro l Panel (at the lower r ight in Figure 18): BackBurner,
CedarPaper , Discussion, Documenta t ion , etc.

~35 We rely heavily on our electronic mail systems at PARC. We use them for mail
as well as for the type of announcement that might in other environments be posted
on a bulletin board. In addition to messages from one user to another, announcements
of impending meetings, for sale notices, and the like are all sent as messages directed
at expansive distribution lists. You can see examples of such messages in my Active
Message Set in Figure 18 (middle viewer, left hand column).

There are a number of such electronic mail systems in use at PARC (because there are
several different programming environments). However, all of these access a common
mail distribution service [1]. Walnut. the mail system for Cedar. provides facilities to
send and retrieve mail and to display and classify stored (previously retrieved) messages.
Walnut uses the Cypress database system [3] to maintain information about stored
messages.

t36 You can see the feedback from the reminder system in the message window at
the top of the screen: "Reminder will be posted at Tuesday, September 20. 1983 10:30
am for 60 minutes." This time was computed from the string "10:30 tomorrow" in the
subject field of the message, using the date field of the message to determine the
reference point for "tomorrow," i.e., pretend today is 19 Sep 83 when figuring out what
tomorrow is, even though I am actually reading the message on September 20 (the day
after it was sent).

t37 Here is an excellent example of what we mean when we say Cedar is integrated:
the various facilities can use each other in important ways since they all coexist in the
same address space. (Here the reminder system uses both Walnut and Tioga.)
Furthermore, there need not be any explicit context switch and corresponding loss of
state when switching between tasks or programming tools, for example, in switching
from debugging, to editing, to reading mail. Integration is one of the reasons why a
large virtual address space (> 24 bits) was one of the highest priority items in our
original Catalogue of Programming Environment Capabilities [4].

190

I f | point at one o f the message set but tons in the Walnu t control
panel and click the mouse, Walnu t creates a viewer on the
cor responding message set. This viewer shows the date, sender, and
subject o f each message in the set. For example, I typically save
messages abou t bugs in my software in the message set called MyBugs.
The message regarding the bug I want to fix is in this message set,
which I'll now open.

The message that I am interested in is l 1 -Feb-83 Wi l l i e .Sue .pa
bug??., t38 I 'll click it, and Walnu t will obtain the message contents
from the data base and pu t i t in a new viewer as shown in Figure 19
(top viewer, left hand column).

A Bug Report

The message states tha t when an event consisting of jus t a commen t
is typed to the executive, an error occurs. Le f s try it and see. Instead
of typing the c o m m e n t in the message into Work Area A, 1 can s imply
copy it by select ing the corresponding characters in the message while
ho ld ing down the SHIFT key. t39

& l O -- try it now
ERROR IOImpI .EndOfStream from
Input lmpI .GetCedarScannerToken 1
computation suspended, switching to Action Area E...

(and down below a new Work Area pops up in which appears:)

Action # 1 (kind: signal, process: 204B) (from Work Area A)
ERROR IOImpI.EndOfStream[stream: {15501066B - Inpu t From
Rope Stream}] from Inputlmpl.GetCedarScannerTokenl

I ~L l~e 5u~

o~.,.c

J

Figure 19: A user reports a bug via an electronic message; Checking
ou t the prob lem causes an error which results in the creation of a

new Action Area

Well , it 's jus t l ike the message said. We ~ot an EndOfStream error,
t 40 t41 and are now in a new Action Area. Let 's walk the stack and

see what 's happening .

& l WalkStack InputlmpI.GetCedarScannerToken
&2 WalkStack Inputlmpl.GetCedarToken
&3 WalkStack Inputlmpl.fromTokenProc
&4 WalkStack Inputlmpl.GetCedarScannerToken
&5 WalkStack InpuU mpl.GetCedarToken
&6 WalkStack UserExeclmpl.lsWellFormed

The first five levels o f procedure nesting correspond to internal calls
within the IO package. However, the procedure
U s e r E x e c l m p l . l s W e l l F o r m e d looks more promising. Let 's look at its
source .

&7 Source userexecimpl.mesa 23932
IF Rope.lsEmpty[rope] On NOT Rope.Equal["*-",
Io.GetCedarToken[stream]] THEN GOTO Yes; t42

The under l ined location marks the place in the source that corresponds
to where the computa t ion is now. It looks l ike the program is using
the procedure J o . G e t C e d a r T o k e n to read a token from s t r eam. Let 's
examine the variable s t r e a m using the interpreter.

&8 *- stream
{15725422B . Input From Rope Stream}

Note that s t reams have PrintProcs which pr in t out the kind of stream,
suppress ing the s t ream's actual representat ion. t43 In this case, we do
want to look inside of the stream at its data, which we can do using
the interpreter. First, l ' l l f ind ou t the s t ream's type.

&9 *- &?
is of type STREAM: TYPE = REF IO.STREAMRecord;
IO.STREAMRecord: TYPE = RECORD[streamProcs: REF
IO.StreamProcs, streamData: REF ANY, propList: Atom.PrepList
*- NIL, backingStream: STREAM *- NIL]

This says that a s t ream is a REF to a record consisting of four fields:
s t r e a m P r o c s , s t r e a m D a t a , propLis t , and b a c k i n g S t r e a m , each of
which have the indicated type. Let 's look at the s t r e a m D a t a field,
which contains the data for this par t icular stream.

& l O *- &.streamData
*[rope: "-. try it now", pos: 13]

Even though the type o f this field is REF ANY (so that different kinds
o f s t reams can store different types of data in the same field), the
in terpre ter is able to figure out the type of the referent using the
run- t ime type system. It tells me that the data for this s tream is a REF
to a record consis t ing of two fields named r o p e and pos , whose values
are "-- try it n o w " (notice that this ROPE has 13 characters), and 13.
In o ther words, the current position, pos , does indeed correspond to
the end o f the stream. W h a t happened to the previous 13 characters?
In puzzlement , I decide to look at the definit ion for
I o . G e t C e d a r T o k e n . I select the characters I O . G e t C e d a r T o k e n in the
source viewer, and then click the O p e n menu but ton to create a new
viewer on the IO interface posi t ioned at the definit ion of
Ge tCedarToken , as shown in Figure 20.

"1"38 The video tape that this demonstration was taken from was originally produced
in February 1983. whereas this paper was written in September, 1983. Obviously this
and other bugs that 1 will fix during the course of this demonstration were actually
taken care of many months ago. However, for the purposes of this paper, I have restored
Cedar to the state that it was in February. at least with respect to these changes, and
am reenacting the scenario.

t39 Note that in this case I am copying characters from a Walnut message viewer into
an Executive Work Area, still using the same method as we used previously. Consistency
of user interface!

1"40 Uncaught errors and signals are handled the same as breakpoints: they constitute
actions and are given their own Action Area.

t41 Notice that. since it is now 10:30AM. the reminder concerning that talk ! wanted
to attend (entered in Figure 18) ' has popped up at the bottom of my display, fourth
icon from the left. The icon is blinking to call itself to my attention. If I were to open
this icon, I would find the original message.

t42 The Cedar Language provides for an extremely restricted form of GOTO statements,
namely to a series of labelled statements called an ExitsClause that appear at the end
of a block. Think of GOTO as the Cedar way of spelling EXIT.

t43 A stream in Cedar is simply a producer and/or consumer of byte sequences. The
stream abstraction can be implemented in a variety of ways; for instance, the producer
behind an input stream might be a file or a user typing at a keyboard. We call each
stream implementation (file. keyboard, and so on) a stream class. One of the most
important aspects of streams are that a typical client program can manipulate a stream
without regard to the class that implements it, so varying stream implementations can
be substituted without effect on the program [2]. Furthermore, new implementations of
streams can be supplied by the user. Examples of such user defined streams are:
decrypted input and encrypted output streams layered on top of other streams, an
output stream that automatically indents to indicate structure, a stream which reads
Intel format absolute binary object files, and a stream that emulates Unix pipes.

191

i I I W I I l I a ~ ~ 1 ¢ ¢ [w f f : l o t t] i t t o i ~ , [l o o t t x . I . {

t x n ~ $ ~) ~ m] n p U n m l a l Ge tcc ' aa r :

I &] ~ . , ~ 1 ~ , t n p u t J m p L t r o m T o ~

~ ~ ~ u] p r * t ~ t P L I~ C h i n e [n p u a ~ p ; G e ~ e d e

z o G e ~ o k e n ~ r n t ~ (
I I I . S ~ I

P l f f l l I I b f l l [I t s t n l m i s i ~ (1 } 7 2 ~ 4 2 ~ - Inpu t F ~ m R o ~ SWI

~ t ~ m e i~ l aa t s l ~ m i ~ l o o o : ~ ~ t a e ~ a i a g I~pe. t y p e

.

Figure 20: The IO interface serves as onl ine documenta t ion

Aha[The c o m m e n t in the IO interface says: " G e t O e d a r T o k e n

automat ica l ly ti lters out all commen ts . " T h e problem is that when
my program asks for the next token from the stream, there isn' t one,
because comments are filtered ou t when reading tokens. So the error
E n d O f S t r e a m is raised, t44 W h a t I should be doing in this program is
ca tching the signal E n d O f S t r e a m in the call to I O . G e t C e d a r T o k e n ,
and s imply re turning TRUE. Let 's make that change.

Now let 's return to our Action Area on the fight, and since we are
f inished with this problem, we can abor t the action, and return to the
W o r k Area above.

C o m p i l i n g , S u p p o r t for Para l le l O p e r a t i o n s

Now I want to compi le the files that I have edited. The system keeps
a list o f those files tha t need to be compiled, i.e., those that were
edi ted but not yet successfully compiled. It also provides visual
reminders in the form of a black border a round the corresponding
icons, as shown in Figure 21. I can instruct the system to compi le all
o f the files that need compi la t ion via the c o m m a n d compi lea l l , t45

& 10 compileall
>Compile UserExecMethodslmpl.mesa UserExeclmpl.mesa

Whi le tha t is going on, I ' ll answer Wil l ie-Sue 's message, l click the
A n s w e r menu but ton in the viewer containing her message, and
W a l n u t creates a reply form containing the appropr ia te Subject, To,
and cc fields. In Figure 21, 1 am in the process of compos ing my
answer in the viewer on the lower left, while the compi ler cont inues
to run in the Work Area at the upper right, i'46

! finish compos ing the message, and click Send, and the message is
sent on its way. In Figure 22, the Wa lnu t Control Panel tells me that
the message has been delivered. The next t ime that Wil l ie-Sue clicks
her NewMai l menu button, she will see the message.

J-44 The Cedar language uses signals and errors as a mechanism for handling exceptional
conditions. Think of a signal/error as a procedure call where the body of the procedure
is determined dynamically using the call stack.

i'45 CompileAll simply keeps track of those files that have been edited. It does not
deduce that because Interface A has been recompiled. Modules B, C, and D also need
to be recompiled. This latter behavior is much more ambitious and falls under the
category of what we call System Modelling. A preliminary version of a system modeller
has been built and tested, and a more comprehensive version has been partially
implemented.

t46 As mentioned earlier, Cedar supports and encourages concurrent operations, and
users make heavy use of this parallelism. Here I am sending a message while compiling
a file. In this particular case. only one task requires my ~ttention: the other is running
in background (my background, not the computer's). However. it is not uncommon for
users to be performing several foreground tasks simultaneously, such as editing several
source files at the same time. or debugging a program by stepping it from breakpoint
to breakpoinL while simultaneously reading mail. etc. The important point is that the
user's interactions with the system can match the style with which he is most comfortable.

~.,,¢,:?d~',~ ~ ~Iff.~g . ° ~ . , . ~
a t ~ a . ~

l t l e ~ plle~]

, . . , , q

[r b l , t 27-~p-I~ i i Z, ~1 P~,T I

. o, ~ ,

Figure 21: Ceda r suppor ts concurrency: answer ing mail while
'compil ing

Meanwhi l e the compi le r has successfully compi led the first file (notice
in F igure 22 tha t the black border a round the fifth icon from the left
is now gone), bu t ran into a p rob lem in compi l ing the second file.
The UserExec has created a viewer on the left which displays the
compi le r log conta in ing the error message, i47

, ~o"~?~rL~ ~ ~ ,

, , . ~ . z z ,~ r

Figure 22: Compi l e r error log

The error is a s imple syntactic error, a miss ing 1- I ' ll make this fix
and recompile . In the meant ime, this reminds me that a user had sent
me a message abou t a request concerning the UserExec 's behavior
with regard to the compi le r log. I keep such messages in my
UserReques t s message set. I click the UserReques ts but ton in my
W a l n u t Cont ro l Panel to create a viewer for this message set, and then
look at the cor responding message, which states tha t the user wants to
be able to specify that compi le r logs are always created iconic instead
o f a lways be ing open as in F igure 22.

t47 The compiler log includes for each error a position (character count) in the source
file. The user selects this position, and then clicks the Position menu button in the
corresponding source file. and the source file is automatically positioned at the indicated
location. The user can thus quickly step through the source file from error to error and
make the necessary edits. Even so. the process of getting a file to compile successfully
is still very tedious. More tools are required. For example, many compiler errors turn
out to be of the nature that their correction could be automated. One could imagine an
extension of DWIM that would handle this task.

192

The User Profile

Since some users like the way compi le r logs current ly work, to satisfy
this user 's request, I am going to define a new user profi le option so
tha t each user can specify how they want the compi le r log handled.
In the area o f user interface, rather than enforcing a consensus upon
everyone, we al low individuals to tailor the system to suit themselves,
enabl ing facilities tha t they like and disabl ing those that they don't .

Let 's i m p l e m e n t the new profile option. It willl allow me to
demons t ra te an impor t an t aspect o f the Tioga Editor: its abbreviat ion
expansion facility. I ' ll create a new viewer, load it with the appropr ia te
source file, and then scroll to the place where I want to make the
change. W h a t I want to do is to insert a condit ional s ta tement that
will check the user 's profi le to de termine whether or not to create the
viewer for the compi le r log iconic.

Templates as an Aid for Editing Programs

To accomplish this, I 'll use Tioga 's abbrevia t ion expansion facility to
cause a templa te for an IF-THEN s ta tement to be inserted. To do this,
I type IF fol lowed by CTRL-E (E with the CrRL key depressed). This
causes Tioga to expand the abbrevia t ion for IF into the template]F
I~IEST~I THEN I~TRUEPART~I. t48 This template contains two fields, TEST
and TRUEPART, each de l imi ted by special brackets called placeholders,
displayed as ~,~. Tioga allows me to move to the next field de l imi ted
by placeholders with a single keystroke. I f I am posi t ioned at one of
these fields, anyth ing I type replaces the field. Right now, I am ready
to specify the predicate for my IF-THEN statement.

The predicate I want to use is the procedure Use rP ro f i l e .Boo lean . I
type the name o f the procedure, Use rP ro f i l e .Boo lean , and then I
type CTRL-E again, this t ime to request a templa te for its arguments .
Note that U s e r P r o f i l e . B o o l e a n is not def ined as an abbreviat ion;
Tioga computes a templa te consist ing o f the names, types, and defaul t
values for this procedure using the run- t ime type system, and inserts
i t in the documen t as shown in Figure 23. t49

Clear ~ Cat OeUmpl prevFile ~ Save Time Spli t Places Levels ChangeLog
F i n d Word I2ef PosiUon Normal ize PrevPl~ce Re~elect
F i r s t L e v e l O n l y MoreLeve l s FewerLeve l s AllLevels

S h o w L o g : p a o c [n~rae: aoPz , ok: t oo l . tAW, exec: ExecHandle , b l ink l t : t o o l ~ TROZ]
RZTURNS[Iog: V i e w e r] = {

log ~ V i e w e r O p s . F i n d V i e w e r [n a m e] ;
xr N o r ok TMZrl

(
crea te lconic : aOOLEAI~ ~ TRUIj
l r exec # NIL AND NOT e x e c . v i e w e r . i c o n l c AI~D (InputFocus .GeUnputPocus[] ,owner =
exec .v i ewe t) r / tz l~ e rea te lconic * r.~l.sz;

i r O~rProD_le .Boole~[key: J ~ l l ~ l , defau l t : PBOOLEAN * FALSE4} TI~gN
I . T K U E P A R T 4 ^

i r log # NIL THEN ViewerOps .Res toreViewer [log]
z x s z t r OserExec.CheckForFUe[nome] T~nN log # CreateLog[n~ane: neone, i comc:
e rea te lconic] ; - - l eg n o t there in c ~ e o f n o s u c h source

}
ELSE t r log # NIL THgN (

Ir des t royLogOnSuccess r r lnN { V i e w e r O p s . D e s t r o y V i e w e r [l o g] ; log * I~IL)
z~sz ViewerOps .Res toreViewer [1o g];
};

};
C r e a t m L o £ : Paoe [name: n o p z , i con ic : aOOL * TRUg] a z r u a ~ s [v i e w e r : V i e w e r] = {

viewer * ViewerOps.CreateViewerIflavor: SText, info: [nacrne: name, flle: name, iconic:
. iconic]]

};

Figure 23: C o m p u t i n g a templa te for a procedure call

As the templa te indicates, UserProfile.Boolean takes two arguments ;
the first is n a m e d key, and is o f type ROPE, the second is named
defau l t , and is o f type BOOLEAN. I'll call the key for the new user
profi le opt ion tha t 1 am going to define C o m p i l e r . l c o n i c L o g s . I f the

t48 The Tioga abbreviation expansion facility helps the user in dealing with the Cedar
syntax, avoiding errors, and formatting programs consistently. There are similar
abbreviations for many of the language constructs in Cedar. e.g.. FOR expands to FOR
I~,ControIVariable,~ ~- IMnitialExpr,q, ~,NextExpr, DO I~BODY41 ENDL"OOP. In
addition, the user can add to or change the set of predefined abbreviations.

t49 Runtime availablility of all source program information was another important
item on our original catalogue of programming environment capabilities. Underlying
this was our desire to make it easy to extend the set of tools for assisting the programmer.
The computed template facility shown here is a good example of the kind of thing we
had in mind.

value of this key is TRUE, i.e., i f the user 's profile contains an entry o f
the form Compiler. lconicLogs: TRUE, then I 'll make the compi le r
log viewer iconic. The entire s ta tement that I inserted is:

IF UserProfi le.Boolean[key: "Compiler. lconicLogs", default: FALSE]
THEN createlconic *- TRUE;

bu t I only had to type the under l ined characters plus two CTRL-E's.

Using the Interpreter for Experimentation

There was another request in my UserRequests message set concerning
compi le r logs, namely that the compi le r log use the typescr ipt icon
ra ther than the documen t icon, to make it easier to dist inguish the
compi le r log from other iconic Tioga documents .

Before we m a k e this edit, let 's try changing the icon for this viewer
by hand, i.e., by using the interpreter, i s ° So 1'11 reopen my interpreter
Work Area. select the compi le r log, and use the Eval menu but ton to
evaluate the cur rent selection.

&19 CurrentSelection
[Viewer - class: Text, name: Compiler.Log}

The value o f this event is the viewer for the Compi le r Log. l can
man ipu la te this value. For example, let 's look at its icon field.

&20 ~- &19.icon
document

As expected. Now let's change this field to be typescript.

&21 ¢- &19.icon ~- typescript
typescriptt -> typescript is1
typescript

Now let's repaint the icon and see how it looks. I can do this by using
the procedure PaintViewer, which is in the interface ViewerOps.

&22 ~- ViewerOps.PaintViewer[&19]
* * *Missing Arguments: hint: ViewerOps.PaintHint

What ' s a pa in t hint? I ' ll evaluate it and find out. t52

&23 ~- ViewerOps.PaintHint
ViewerOps.PaintHint: TYPE = {all, client, menu, caption}

This says that a PaintHint is an enumerated type consisting of the four
values all, client, menu, and caption. I'll bet 1 can just pass in all for
the h in t a rgument . Let 's try that.

&24 ~- ViewerOps.PaintViewer[viewer: &19, hint: all}
{does not return a value}

Sure enough the icon for the compiler log (the icon in the center o f
Figure 24) is now a typescript. I can now implement this feature by
editing the corresponding source.

f50 Using the interpreter to try things out before going to the trouble of making
changes to a program is a technique that is relatively new to the Mesa community
(although it has been commonplace in lnterlisp for many years). Part of the reason for
this is historical. Earlier Mesa debuggers were non-resident: the debugger operated at
arm's length from the debuggee in an entirely separate address space. Interpreting
expressions in this remote world was slow and cumbersome. Furthermore, the interpreter
only handled a limited subset of the language. We had higher aspirations for Cedar: to
provide a resident debugger that shared the same address space as the programs being
debugged, as well as a complete expression interpreter. Thus, the Cedar environment
represents the first opportunity that Mesa programmers have had for realistically using
an interpreter to carry out experiments.

t51 Obviously I am making some of these typing mistakes just to demonstrate the
pervasiveness of the error correction facilities, but this correction is especially interesting,
because DWIM uses as candidates for the correction only the set of values that an
object of type icon can assume. In order to find what these are, DWIM uses the runtime
type system to compute this information when the error occurs. In this way, DWlM can
work on user defined types as well as those that are defined in the basic system.

f52 Note that in this example, we are evaluating an expression whose value is a type.
One of the goals of Cedar was to make types into first-class citizens. It is still not
possible to pass types around as values, and there is no polymorphism in the language.
However. at runtime, it is possible to perform a wide variety of operations on types.

193

However, now 1 find that while I have made it easy to distinguish the
compiler log from the other documents, there are so many typescript
icons that it is hard to find the compiler log among all o f them.

. ~ . ~ Z : ° , ! ~ ".'~

i ,:~=:,,=~.. =.=~,~-=:. i

I ! iE!!E55 ~L~!!,:SE :'=:~ I = ' : : ~ : : = : " = = . :

I " ~ ' = , ~ 1 " r " ~] [I ' l l I
m.~o, ~ . , , ,.,o {

 ::NNNN
Figure 24: Now there are too many typescript icons

Designing a New Icon

One way of solving the problem of too many typescript icons is to use
a different icon for some of the executives. I'll use a graphics tool
called the IconEditor to design a new icon for Action Areas executives
(the two executives on the right in Figure 24).

&25 run iconeditor
Loaded and started: IconEditor.bcd

In Figure 25, the Icon Editor shows some of the icons that other
people have designed for various applications. The Squirrel icon is for
our data base facility which is named Squirrel. Next to it is the Walnut
mail reader icon you have already seen. Also included in the two rows
of icons are an icon for a calendar, a bus schedule, a TV listing, an
organization chart, etc. The last icon in the second row is the
trafficLight icon 1 am working on (for executives stopped because o f
a signal).

Figure 25: The Icon Editor

The 64 x 64 array o f squares that occupies the lower two-thirds of the
Icon Editor's viewer represents the individual pixels in the icon
currently being edited. 1 can change individual pixels from black to

white or vice versa by clicking with the mouse in the corresponding
square. 1 can also draw lines, change rectangular areas to different
textures (stiple patterns), shift rectangular areas up, down, left or right.
As I make changes in this array, the smaller version of the icon is
updated so that I can see how the icon is going to look, actual size.
I'll make a few finishing touches to my icon - darkening the red light
and adding rays o f light coming from it.

l 'm happy with the icon now, so 1'11 save it on a file and also associate
the name "trafficLight" with this icon by using the Regis ter menu
button in the IconEditor viewer. This will allow me to refer to the
icon by name without having to remember where it is stored.

Now let's use the interpreter to change the icon o f one of the executives
to be the trafficLight and see how it looks. First, we obtain an exec
handle by selecting the viewer and evaluating the current selection.

&26 *- CurrentSelection
t[viewer: {Viewer - class: Typescript, name: Action Area E:
aborted ERROR IOImpl.EndOfStream from
Inputlmpl.GetCedarScannerTokenl}, privateStuff: 7246044Bt]

This value is the handle for Work Area E. Now let's set its icon to be
a trafficLight.

&27 *- &26.icon + IconRegistry.Getlcon["trafficLight"]
select ion fa i led on icon

The viewer is one o f the fields o f the exec handle, and icon is one o f
the fields o f the viewer. I am one level of indirection of: I should
have said "&26.viewer.icon." Since what I did type is correct in every
other respect, I can fix this by simply replaying this line, pointing at
the "." in "&26.icon," and typing "viewer", as I am in the process o f
doing in Figure 26. t53

v lewer~ougge~uutl~

Restart f in i shed
Au thenUcaUng user ok
... Parsing...... Send ing message,... .sending to I rec ip ients
... Message he5 been de l ivered

F i n d Spl i t New Stop Compile Eval Redo Set Clear
&25 ~ ViewerOps.PalntHint
ViewerOps,PalntHint : TYPE = {~ l , c l ient , menu, capUon}
&24 • ViewerOps.P~antViewer[viewer: &lg, h in t : a l l]
{ d o e s not r e tu rn a va lue}
&25 CurrentSelecUon
t[viewer: {Viewer - class: Typescript, narae,. Act ion Area E:
abormd ERROR lOlmpl.EndOfStream from
Inputimpl.Ge~CedarSc~mnerToken l}, p r iva~S tu f f : 7246044B~]
&21 + &25.icon + IconRegislzy.Oeticon["tr~a°frcLight "]
~ e l e c t i o a t ' ~ I M o a i c o n
&2T ~ &ZS.vte.icon ~ IconRegistry.Geticon["tr~d~flcLight "]

^

F i n d Spl i t New Stop Compile Eval Redo Set C l e ~
>Compile U~erExecMethodslmpl,mesa UserExeclmpl,mesa
Compi l ing : U~rExecMethods lmpl no errors
Compi l ing : UserExeclmpl 1 errors
End of eompilaUon
- - bvrr@rx i n - - UserExecImpl
& l l Redo lo
>compileall
>Commie UserExeclm~l.mesa

Figure 26: Editing events as they are being entered

& 2 8 + &26.viewer.icon + IconRegistry.Getlcon["traff icLight"]

Now let's repaint the icon for action area E and see how it looks. We
already have an expression in event 24 that is pretty close to what we
wanL namely ViewerOps.PaintViewer[viewer: &19, hint: all]. We can
use the u s e command to specify reexecution o f this event with a
different value for the viewer argument.

&29 use "&25.viewer" for &19
>*- ViewerOps.PaintViewer[viewer: &25.viewer, hint: all]
{does not return a value}

And there's our traffic light (see Figure 27).

Let's go ahead and make the edit that will cause the system to use the
trafficLight icon for Action Areas.

"{'53 In previous examples, the only editing of the typescript that we did consisted of
appending characters to its end. This examples illustrates that we really can edit, in the
full generality of the term, events that are being entered for execution.

194

a z $ • VlewerOps.PaantHint
ViewerOps,PaantHint: TYPE = {all, c l ient , menu , capuon}
&24 + ViewerOps.Pa~ntVlewer[vie~er: &19, hin%: al l]
{does not i'eturn a value}
&25 Curren~elecUon
• [viewer: {Viewer - c1a$$: Typescript, name: Acuon Area E:
aborted ERROR IOImpl ,EndOfSt re~ from
InputImpl.GetCedeLrscannerTokenl}, privaleStuFf: 7246044B~]
&26 + &28,icon + IconRegls t ry ,Oe~con["t ra t~cLight"]
x e l ~ t ~ o n t ' a ~ l e d o n i c o n
&27 ~ &25.viewer.icon ~ IconRegiztry.Getlcon["trafflcLighe']
27B?
a 2 | u~e "&Zs.vlewer" for &19
>+ ViewerOps.PalntVtewer[viewer : &2Lviewer , h in t : a/l]
{does not re turn a va lue}
&29 + ̂

Spli t New Stop Compile Eval
>compileall
>CompUe UserExeclmpl,mesa
Compiling: UserExeclmpl no errors
End or compilallon
& 12 r u n iconedi~or
Loaded and started: IconEdnor,bcd
&13

Figure 27: The Action Area icon has been changed to a traffic l ight

Wrapping it up

Now let 's compi le the rest o f the files we have changed.

& l 3 compileall
>Compile ActionAreaslmpl.mesa CompilerExecOpslmpl.mesa
Compiling: CompilerExecOpslmpl no errors
Compiling: Ac t i onAreas lmp l . . . no errors
End of compilation

The compi la t ion has f inished successfully. Now let's b ind the program.

&14 bind userexecutive
Loading Binder.bcd...
Binding: userexecutive no errors
End of binding

Unfortunate ly . since the changes we have made were to the UserExec,
a c o m p o n e n t of the system that is already running, in order to test the
changes ou t we have to reload the system: we can ' t s imply replace the
UserExec that is runn ing with the new one. Reloading takes about
two minutes. We hope to imp lemen t a facility for replacing an
indiv idual modu le in a running system. This should great ly improve
the tu rna round t ime on making and test ing changes, t54

Conclusion

The demonst ra t ion conta ined in this paper has presented a number
o f the key concepts and facilities in Cedar. Some of these are: a highly
visual user interface which exploits the high bandwidth display and
mouse point ing device: a uniform screen paradigm provided by the
Viewers Window package, which includes facilities for icons,
whiteboards, and tools, as well as text viewers; a high qual i ty edi tor
and d o c u m e n t preparat ion system (Tioga); spel l ing correction
(D W I M) : availabil i ty o f an interpreter for a compi ler based language;
a strongly typed p rogramming language of the Pascal family which
also includes automat ic storage m a n a g e m e n t the abil i ty to manipula te

154 One of the top priorities in our original catalogue of programming environment
capabilities was fast turnaround for minor program changes (< 5 see). "Our concern
with fast turnaround comes from the observation that programming should be think
bound, not compute bound. There are several "knees" (points of substantial non-linearity)
in one's perception of response delays. One such knee is in the vicinity of 3 to 5 seconds.
We believe that it is essential to reduce the system time for minor program changes to
below this point" [4]. While the changes that we made in this tour were not minor, sad
to say that even had they been. we would still have been forced to reboot in order to
test them out. Attacking this shortcoming is now one of our highest priority items.

types at runtime, and suppor t for Lisp-style lists and atoms: a
sophis t icated debugger which includes source-object code mapping to
facilitate p lant ing of breakpoin ts and examining program state: suppor t
for concur ren t operat ions: and a high degree of integration of facilities
and uniformity o f user interface.

Today, in the fall o f 1983, c e d a r is b e i n g used by about 30
researchers. Visitors from other laboratories are envious of Cedar ' s
emphas is on visual interaction, o f its suppor t for concurrent tasks, o f
its sophis t icated debugging facilities, and of the wide variety of
packages and tools. Cedar makes it possible for a researcher to design
and i m p l e m e n t an exper imenta l computer system in a remarkably
short per iod o f time. For example, in the last few months, various
p rogrammers using the Cedar env i ronment have been able to construct
two exper imenta l systems for handl ing electronic mail, one for
compute r storage of voice messages, one for producing raster images,
several for VLSI design. They all reported favorably on how easy it
was to construct real, funct ioning systems.

References

[1] Andrew D. Birrell. Roy Levin. Roger M. Needham, and Michael D. Schroeder.
"Grapevine: An Exercise in Distributed Computing." Communications of the
ACM. Volume 25, Number 4, April 1982.

[2] Mark Brown, "The IO and Convert interfaces." in [5].

[3] R. G. G. Cattell, "Design and Implementation of a Relationship-Entity-Datum Data
Model". Xerox Palo Alto Research Center Report CSL-83-4. May, 1983.

[4] L. Peter Deutsch and Edward A. Taft, ""Requirements for an Experimental
Programming Environment."" Xerox Palo Alto Research Center Report
CSL-80-10. June. 1980.

[5] J. H. Homing, editor. "The Cedar System: An Anthology of Documentation," Xerox
Palo Alto Research Center Report CSL-83-14.

[6] D. H. lngalls, "The Smalltalk-76 Programming System: Design and Implementation."
Proceedings of the 5th Annual ACM Symposium on Principles of Programing

Languages. 1978.

[7] Butler W. Lampson and Kenneth A. Pier, "A Processor for a High-Performance
Personal Computer," Xerox Palo Alto Research Center Report CSL-81-L January,
1981 (also in Proceedings of Seventh Symposium on Computer Architecture,
SigArch/lEEE. La Baule, May 1980, pp 146-160).

[8] Butler W. Lampson. The Cedar Language Reference Manual, Xerox Palo Alto
Research Center Report CSL 83-15.

[9] John Maxwell, "The Cedar Spy," in [5]

[10] Scott McGregor "The Viewers Window Package/' in [5].

[11] James G. Mitchell, William Maybury, and Richard Sweet. "Mesa Language
Manual." Version 5.0. Xerox Palo Alto Research Center Report CSL-79-3.

[12] Beau Sbeil, "Environments for Exploratory Programming," Datamation. February,
1983.

[13] Warren Teitelman and Larry Masinter, "The lnterlisp Programming Experience,"
Computer, April, 198

[14] Warren Teitelman, "The Cedar Programming Environment: A Midterm Report."
Xerox Palo Alto Research Center Report CSL-83-11 December. 1983.

[15] Warren Teitelman, The Interlisp Reference Manual, revised 1978. Xerox Palo Alto
Reserach Center.

[16] C. P. Thacker. E. M. McCreight, B. W. Lampson, R. F. SproulL D. R. Boggs,
"Alto: A Personal Computer," Xerox Palo Alto Research Center Report
CSL-79-1L August 1979 (also in Computer Structures: Readings and Examples,
second edition, by Siewiorek, Bell and Newell).

195

