A Tour Through Cedar

Warren Teitelman

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Intreduction

This paper’rl introduces the reader to many of the salient features of
the Cedar Programming Environment, a state-of-the-art programming
system that combines in a single integrated environment: high quality
graphics, a sophisticated editor and document preparation facility, and
a variety of tools for the programmer to use in the construction and
debugging of his programs. The Cedar Programming Language [8] is
a strongly-typed, compiler-oriented language of the Pascal family. What
is especially interesting about the Cedar project is that it is one of the
few examples where an interactive, experimental programming
environment has been built for this kind of language. In the past, such
environments have been confined to dynamically typed languages like
Lisp and Smalltalk.

The paper attempts to give the reader the feel of the Cedar system by
simulating a live demonstration. The demonstration is actually taken
from a video tape of such a live demo; the sequence of events, as well
as the dialogue, is fairly close to what a viewer of this tape would see
and hear. Numerous snapshots of the display taken at various points
during the session simulate the visual information contained in the
tape. Text that would actually appear on the display during the
demonstration — either because the user typed it or the system printed
it — will appear in this paper in a distinguished font. The explanations
that the demonstrator would give will be in the normal font. Comments
that would be distracting during a live demonstration but are
appropriate for the paper are included as footnotes. 2

Background

In 1977, the computing community at Xerox Palo Alto Research Center
(PARC) consisted of three distinct cultures: Interlisp [15], Smalltalk
[6], and Mesa [11]. Both the Smalltalk and Mesa communities
programmed primarily on the Alto, a small personal computer that
had been developed at PARC (16]. The Interlisp programmers operated
on a time-shared, main-frame computer. Each of these communities
was beginning to run into the limits imposed by the size of memory,
both real and virtual, and by the computational power that the
corresponding machine provided.

We decided to solve these problems by designing and building a much
more powerful personal computer, the Dorado [7]. The arrival of the
Dorado in 1978 resolved our immediate hardware problems of

+1 This paper is a condensed version of a paper contained in [14]; because of space
limitations, many of the figures have been removed and comments have been abbreviated
or eliminated. [14] also contains a second paper entitled "The Roots of Cedar,” which
describes the conditions in 1978 that led us to embark on the Cedar project, and helped
us to define its objectives and goals, as well as a third paper entitled "Cedar: The
Report Card,” which evaluates the successes and failures of Cedar.

12 These footnotes contain a lot of information about Cedar: why we did things certain
ways, how useful a particular feature turned out to be, etc. For some readers of this
paper, the footnotes will contain the most interesting material. However, the reader who
is unfamiliar with Cedar and simply wants to get an overview might find the footnotes
distracting to the flow of the demonstration. Therefore, a good way for him to read this
paper might be to ignore the footnotes on the first reading (especially the long ones),
and then come back to them later.

0270-5257/84/0000/0181501.00©1984 IEEE

execution speed, memory size, and address space. Our ability to
experiment with computer systems, critical to our research, was now
limited only by our programming capabilities of which the principal
component was the programming environment.

Thus, in 1978 we embarked on a project to design and implement
Cedar, an advanced programming environment that would take
advantage of the capabilities provided by the Dorado. A group of us
met for several months and produced a catalogue of programming
environment capabilities for such an environment [4]. At this point,
we were not committed to either of the three principal programming
languages in use at PARC, but after lengthy deliberations we decided
to base Cedar on Mesa [14]. However, our goal was that Cedar would
support each of the Lisp, Mesa, and Smalltalk programming styles.

For various reasons as the Cedar project evolved, some of our goals
changed, or at least were reprioritized; a fair characterization of the
Cedar project as it is currently constituted is that it is an attempt to
take the Mesa language and build for it a programming environment
based on ideas and techniques from Interlisp and Smalltalk.

Now let’s begin our tour.
The Display

You are looking at (see Figure 1) a bitmap display connected to my
personal computer, a Dorado.t3 The figures you see at the bottom of
the screen in Figure 1 are called icons. They represent objects that are
of potential interest, but not currently in active use. Some of them
represent text documents, scanned images, or other data structures that

r - - me: F G e

| =

Figure 1: Initial cedar screen layout showing various icons

13 All Dorados have as a display a high resolution television monitor, 1024 pixels wide
by 808 high. The physicai dimensions of the display are 12" x 9", Figures in this paper
that show the entire display are about 1/2 scale (but full resolution).

I can look at and manipulate. Others represent tools or services that 1
can use. Their shapes are meant to be suggestive of their functions.
For example, the icon on the lower right in Figure 1 that looks like a
mail box represents my mail reader, called Walnut. The fact that the
flag on the mail box is up indicates that I have new mail. The icon
next to the mailbox that looks like a stack of envelopes represents my
active message set. We will use both of these later in the demonstration.
The icon next to my messages is used for sending hardcopy to the
printer down the hall whose name is Clover, and the icon in the left
hand corner of the display that looks like a file cabinet views the
FileTool, a facility for obtaining files from remote servers. T4

Viewers Window Package

The Viewers Window Package provides the basic display paradigm for
Cedar [10}. It allows users and programs to create, destroy, move, and
resize individual rectangular viewing areas called viewers. (To a first
approximation, a viewer corresponds to what is called a window in
many other systems.) Some viewers present textual or graphical data
to the user; others provide the user with various forms of control, such
_as access to facilities or the ability to invoke procedures. Viewers that
provide access to a facility are called tools, and viewers that simply
invoke a procedure are called buttons.tS The FileTool and the Walnut
Mail Reader shown at the bottom of Figure 1 are examples of tools,
and the nine small boxes labelled Idle, Clean, New, et al, at the upper
right in Figure 1 are examples of buttons.

The icons at the bottom of Figure 1 are also viewers — viewers in their
iconic form. Opening an iconic viewer tells the Viewers Package to
allocate screen real estate to the viewer in the center portion of the
display (see Figure 2), thereby allowing the viewer to present its
contents in a more comprehensive fashion. Conversely, closing a viewer
releases the space that the viewer currently occupies, and causes it to
be displayed in iconic form at the bottom of the screen.

The user can open an icon by pointing at it using a device called a
mouse [16]. Pointing is accomplished by sliding the mouse along a
horizontal surface to position a mouse-controlled cursor on the display.
(In Figure 1, the cursor is displayed near the center of the screen as
an arrow.) When the desired location is reached, the user depresses
and releases one of the three buttons located on top of the mouse. We
use the verb click to describe this act of positioning the cursor and
pressing and releasing a button. Let’s open the icon for the Clock and
the FileTool. This produces the configuration shown in Figure 2 in
which both the Clock and the FileTool viewers now occupy large,
rectangular areas whose height is nearly the height of the entire display.

[Stopt VT of e-May 13 1611248 PDT

[Update 51
Locar

DE Fiie Exporuomty
connect Password venry

List-Opuons' DFGed -bweai-Bolowt
Claset DFGmBown: -Hemowe-Brictet

Rewnever Local-List
siore: Remote-Lust:

Figure 2: The same display after opening the FileTool and Clock
viewers

182

Most top-level viewers (viewers that are themselves not contained as
part of another viewer) include a collection of buttons for invoking
various operations associated with that viewer. For example, the
FileTool viewer includes buttons for retrieving, storing, and listing
files. The user clicks a button to make the corresponding operation
happen. Often, these buttons are arranged in a horizontal array called
a menu that is displayed just below the viewer’s caption, the black area
at the top of each opened viewer that contains the viewer’s name. For
example, the Clock has a menu that includes the buttons SwapColor
and ChangeOffset (see Figure 2). More elaborate menus are associated
with text viewers, as shown in Figure 6.

In addition to buttons specific to particular classes of viewers, buttons
for various operations that apply to al/l viewers regardless of their class,
such as Destroy, Close, and Switch columns, are contained in a menu
that is hidden under the caption. This caption menu is only displayed
when the mouse is actually in the caption area (it can be seen in
Figure 10). Other buttons for invoking system-wide activities, such as
creating a new viewer, performing a checkpoint, and booting, are not
contained in a particular viewer but instead are included in the message
area at the top of the screen (see Figure 2). For example, the button
PS (PrintScreen) is used to produce hard copy images of portions of
the screen and was used to generate the figures in this paper. The
remainder of the message area is used for displaying various comments
about the system’s status and behavior. The bottom portion of the
screen is used for displaying icons.

The large, middle part of the screen that in Figure 2 is now occupied
by the FileToo! and Clock viewers is divided into two columns. 76
When more than one viewer is created or opened in the same column,
the viewers automatically share the space available.t” Conversely, when
a viewer is closed or destroyed, the screen space that it occupied is
then shared among the remaining viewers in its column. If a viewer is
grown, i.e., given the full column to itself, then any other viewers in

t4 In a traditional time-sharing environment, users share files straightforwardly since
all files reside in the same place. In our distributed environment, files that are created
by a user on his personal machine can only be shared if they are stored on another
machine called a file-server, a computer with a large disk dedicated to the task of storing
and retrieving files, to which all of the personal machines have network access. For files
that are part of the standard system, such as sources, documentation, and fonts, the user
need not be aware of where the files are stored, or whether they have already been
retrieved onto his local disk - the system takes care of this automatically for him using
a version map that is built when the system is released. However, the user must explicitly
store, retrieve, and keep track of files that are not part of the standard system (but there
are packages to aid him in this task),

+5 The principal difference between a tool and a button is in the number of operations
and degrees of freedom they provide to the user. Tools typically allow the user to
specify a number of parameters (and retain these parameters between invokations),
whereas a button may take an argument, but essentially performs the same operation
each time.

16 Both the width and height of these columns can be easily adjusted by the user
using the mouse.

17 This strategy of placing viewers adjacent to one another with no overlapping and
no blank space is called tiling the screen. It is one of the most widely discussed aspects
of the Cedar user interface, and often leads to heated, religious debates between its
adherents and advocates of overlapping windows such as those employed in Interlisp
and Smalltalk. However, regardless of how they resolve them, each of these screen
management systems deal with the following issues: (a) provide for some form of default
window placement so that the user does not have to be involved in specifying the
position and size of windows if he does not wish to; (b) allow the user flexibility with
regard to screen layout (in particular, some way of overriding default window placement);
(c) strive to make maximal use of the screen real estate; (d) give the user a predictable
and intuitive model about what will happen to the display when he performs a given
operatipn. With regard to this framework, the two screen management algorithms have
different ad and disad For example, overlapping windows give the
user a lot of flexibility with regard to screen layout, but can lead to wasted, i.e.. unused,
screen space. On the other hand, no window need be larger than the information it
contains. Overlapping windows also have the advantage that the working set of active
windows can be quite large, since only a small portion of a window has to be visible
for the user to have access to the window. (This effect of using the comers as handles
for those windows that the user might want to access is provided for in Cedar through
icons.) However, users wind up spending a fair amount of time ensuring that the desired
corners are always visible, and even so, overlapping windows seem to have an uncanny
knack for getting lost.

that column are automatically closed. To show you how this works,
I'll open the remaining icon on the left side of Figure 2, the one
labelled "Cedar" that looks like a chalkboard with erasers on its ledge.
This produces the arrangement shown in Figure 3.

£ 0) 1P (P
Swp! VFT of 4-May-#) 16 12 58 POT wapolor an et 1 3
urscury
FiteNanecs) Upane 1
Local Updae +
oF Fue esorsanly
connect Paswors venty
Reweve' Local-lu Lwi-dpuoms DFGer -bseaBeiea
cuore: Remotw List Clase! DEGrtion' emore_ons
-
aiqt Trope Nowbor MewWE Addteloc TovLine ore] e—rma . R
Cedar 4.4 Documentation Browser
Lus edited vy Jim Tonahue Ialy 26, 1963 4 24 pm. Jim Hornsng May 23,1997 1 42 pm
prelimanary version ot ontine documentution for Cedar Tt consiss o * &
CHCH oF WRICR GoRIALTS e erences 1o oher Whiieboarde, 10 cions 16 that
% o 1 o o hat you i et T and o i1t
e sl e i o plewcad o caring e ol
o Toolhex whieard el cotuuns b (rowOT) e s S s o your exvy
Al S ot ine Frigying iars ot e oo o SARC wn Cota Ccomphiment o Lyle
Raminae” Tre'emie Coad acamension i i i Mot a) Lie IR o s 'y *
ripamen 51 1% TR IGTTRANIOR OY ParucRIt a3pects 3 Cemt. Fach fous ot
ML 8 SLSTIAYES 07 e SRAEGRATSE .
cll- of - Kudos and Queries
Send them aiomt [Fuzios
1o Donanue pu T
Watisoerd e ===
1t pmrt of the had
Sauirrel

Figure 3: The FileTool and Documentation Browser share the left
column

Whiteboards

The viewer that I just opened is an example of a class of viewers
called whiteboards. A whiteboard is simply a viewer consisting of a
two-dimensional area in which viewers and text can be inserted,
removed, or repositioned, i.e., whiteboard viewers provide a spatial
way of organizing data. The whiteboard at the bottom of the left
column in Figure 3 serves as a documentation browser for Cedar.
Notice that not all of the information on the whiteboard is visible in
the viewer; the bottom of the viewer clips off additional information.
This particular class of viewers, whiteboards, elects to simply clip
information that is not visible, rather than scaling the display to fit
the amount of screen space available, as the Clock does in Figure 4.

In order to see more of this whiteboard viewer, let's move the FileTool
from the left-hand column to the right-hand column using the
appropriate button in the menu that is hidden under the FileTool’s
caption. This produces the screen layout shown in Figure 4.

Cedar 4.4 Documentation Browser

Lasi editod by Jim Donahue July 26,1983 4 2¢ pm, Jim Horning May 23,1983 143 pm

*

e dngsare ves s very nary vession o omline documeniation 1or Codar It consiets of -

aocumenstion

=i L 4 *
-

P VET of 4-May-$1 16:i258 pOT

. o tmtow—they provide
. the Cotar hnxu'e e magor componerte) the
G 5P wing 4L he time. the most widely oed Codar ol ke e
s he important sograming wieriace i

i gives ymportant yom

Burectory
FileName(s
Locat

vdf
e
or P Ex
conneet Password ve

Local-Lis:
Remove-Lusst

orGey

Rewsever
sore! e weme]

List-Opaonst
Close!

The Briesing Blur2
The o stow PARC and Cedas rom Lyle Remahar -

ides 415 the "PARC-speak” thal you will m

Figure 4: The Cedar Documentation Browser

183

Online Documentation

The Cedar Documentation Browser shown in Figure 4 uses a
whiteboard viewer to display a data base for the online documentation
for Cedar {3]. About halfway down this whiteboard is a row of icons
for seven other whiteboards: Basics, Language, Components, Tools,
Interfaces, ToolBox, and Games. We can find out more about any of
these aspects of Cedar by browsing the corresponding whiteboard. To
do this, we follow the instructions displayed in the lower right hand
corner of the whiteboard: we move the mouse into the corresponding
icon and click the middle button. This will cause a new viewer for the
corresponding whiteboard to be created and displayed.’r8 For example,
let’s open the Components whiteboard, which includes whiteboards
for various important components of Cedar such as the Viewers
package, the Tioga editor, and the UserExecutive. The Components
whiteboard in turn contains an icon for the Viewers Package
whiteboard. If we middle-click this latter icon, we get the configuration
shown in Figure 5.

Cedar 4.4 Documentahon Browser The Viewers Component of Cedar

Tne Viewsts Window PAckart 15 the arortee of the naer mput and

m Dumehue July 26, 198 4 20 pm. Jum Morming M,

spplication, whle iiowing e e 1 iRty LRTRCH i Ay FOCK
spplications
v busi ohjet manipalates by cliens propres und wisble o he wet i€ the

s vory preimsnacy version of rine docusentacen &
hach

ieboard bel
i cnect sut e mmuum i 10 e mdop on PARE and Cod]

mentaon i deiceivad in 1he Mot (A
compunent 1 A5 7k EAGOn on FATICRIAL MpeCts 1 ¢
3ACINSAY 1n }anual 3(1a gsulaved on (heas whutchon

Ly be modiped by The ser 4s wel &t 4n0E? program Control
Doc s10ga is written or he

Buiti-in Classes

A nanty coieiion ot Viswer clascs ..
‘Buitons. Late!

! important Gedar Components

The components ot Cedar that yon ars Likrly I Usa modl Irsquently 1nClac
Viewess rtne Cedar window manager.

For sach o tnee companenss. we pive (e LF e conusning sil o the 5o
Ot muiaards wiin (5T nsormaiion o (e interisces
mponens oro,

FIZ_OEE]

nacer o omer componerts of Cedar ther
c catalof Ang the Cedar and 1SL

Aoamonatly. nere are» &

And there s more
Tne Intertace Sammary section of the Viewers Documentation gives ail ot the relevant

EHEE

Flgure 5. Browsing the documentation using whiteboards

The whiteboard for the Viewers Package that appears on the right in
Figure 5 includes icons for the various public interfaces of the Viewers
Package, as well as an icon for the Viewers Package online
documentation contained in the file ViewerDoc.Tioga. We can cause
this documentation to be displayed using the same method as we did
to display the whiteboards, namely by simply moving the cursor into
the icon and clicking. ¢

The Tioga Editor and Document Preparation System

The text viewer that appears in the left-hand column of the display in
Figure 6 is the on-line documentation for the viewer package itself, in
the form of a Tioga document. Tioga is both the editor for Cedar
programs as well as its document preparation system.“o In Tioga, a
document is a tree structure of nodes rather than a list of paragraphs

8 The system will automatically obtain the necessary information from the
corresponding data base, which is stored on a file-server. All of this happens reasonably
quickly (a few seconds).

19 We have placed a great deal of emphasis in the design of Cedar on uniformity of
command interface. "What is important about a standard user interface package is that
the user be able to confidently predict the general manner of interaction with a program
that uses the package. even though he hasn't experienced it yet; and that by and large,
the user will be right. This has been called the Law of Least Astonishment” [4].

110 The Viewers Package documentation shown in Figure 6, as well as all Cedar
documentation, was prepared using the Tioga editor, as was the paper that you are now
reading. When hardopy is needed, the Tioga typesetter {represented by the printer icon
shown at the bottom of Figure 6) is used to generate high quality hardcopy from the
document and send it to the corresponding printer.

so that a hierarchical structure can be explicitly represented. Successive
levels correspond to greater levels of detail, and the viewer of a Tioga
document can be instructed to suppress the display of all nodes deeper
than a certain level. For example, in Figure 6 only the top level of
nodes are shown, thus effectively providing a table of contents.

m» e PN Places Levels Chanpetot e
Ief Paguon Nomaie Fuobloe Kesclec

FitnLeveiCnty * Morelevels Fewerbeveis Alllevels The Viewers cgmpo,,em of Ceda,
Inter-Office Memoranduss
Windon Packete s e aroiee 1 i wer inpat
3 Zedat Inseren e Crcember 21, 1982 Satae prOCARTINE ehviTonmERL 1 prowides
ps 1 there 15+ privae dupity, aouse and Keytourd o
From Soom Mcrogor Lacaon Paio A o Lo Siowint the uiee o momalreneoLsY SETRCt w1
svbce “he Viewers Window Fxkete Orpamszeuon PARCASL

applicanan Tois - hun
Fues dsgol-Gedar Documentauon VsewsiOos Toge kad ViswerEe Pres sppicanim T ofimacd org the beat aratof ncrony
Clampler 1 sate. soe the eieTonces withn och seeTion, and (o
Torsmeny [indigo] Sadar sewers iewets A1, o exportad by the Codar boct il consult the iateriaces Gurectly elow we give some of the basic V|
T pencs uitt-in Clas:
i i seiten ot e Vaewars aae
The Viewers Window Package e v on Bemtnar o

te: Tesiroy.

EIEIEIET 94

m o ning new eniries I

. . and T Soiscun
And there s more

The Intestace Snmmary sxciion of ine Viewers Cocumentation
tniormation

=

|

|

|

|
XEROX |

i

|

|

i

|

Disclaimer

Introdactisn

Screen Layout

Viewer Classes

Viewer fastances

Predefined Viewer Classes

Tmplementation Guideiines

Clicking the MoreLevels menu button again would show yet further
detail, i.e., the contents of the subsections entitled Buttons, Containers,
etc. Now let’s scroll back to the beginning of the document and I'll
briefly demonstrate how the Tioga editor works.

The Tioga editor allows the user to select individual characters, words,
or entire nodes or branches (a node plus all of its children). For
example, I can select the word "environment” in the first paragraph
of the introduction (see Figure 8) by pointing at it and clicking the
middle button of the mouse. This does two things. First, it establishes
the input focus, i.e., tells the Viewers Package that any characters that
I type should be seen and interpreted by this viewer, not by some
other viewer also waiting for input. Secondly, clicking the mouse in a
Tioga document tells the Tioga editor the location of the current
insertion point, in this case immediately following the word
"environment.” Tioga indicates the current insertion point on the
display by the appearance of a blinking caret. (In Figure 8, the caret
can be seen in the third line of the first paragraph, just after the word
"over.") Basically, what all this means is that to use Tioga, you simply
point and type and the characters are inserted into the document at
the place where you pointed. Figure 8 shows the state of this document
after 1 pointed at the word "environment” in the second line of the
first paragraph and typed "Here I am in the process of inserting
material: the quick brown fox jumps over.”

S

Figure 6: Online documentation for the Viewers Window Package

In combination with scrolling, the use of levels in Tioga makes it easy
for the user to browse through a document or program and quickly
find the part that interests him. For example, let’s scroll to the section
entitled "PreDefinedViewer Classes"t!! and click the MoreLevels
menu button at the top of the viewer.Y12 This allows us to see one
more level of detail, the titles of subsections, as shown in Figure 7.

ear mp) PrevFile Blore Save Time
Find Wora Det Pasition Normalize PrevPlace Reselect
FuirsiLevelOnly MoreLevels FewerLevels AllLevels

Predefined Viewer Classes

plit evels ChangeLog eset

The Viewer

reeze Newbox

The Viewers Wi
hardware in the Ced
programmer that th
application, while o]

WLmed below is a st of viewer Classes for client use with implementations provided in the Cedar
t file,

Buttens
apptications.
Centainers The basic object
viewer; a rectangul
Labels user display, A viel
interact with the dal
Rules applications softwarl
&nd has available o
Text & viewer may

The document

rammer intendif
application, It is or]
system provides an
examptes of usage,
consalt the intertacd

Implementation Guidelines

The procedures and variables in a viewer were designed to support a perticular style of
implementation for new classes. un\y ot the pmcemms and varisbies were ad
help solve some general problem e o ol poained
10 e 1hese PrOCEARTes, it they Showia onty dvpart fram hem mheR they have good reasons,

The best way 1o write a uset application that uses Viewers is to first write a applications package|
accessible to client programs and then make a thin veneer over it for users, It is tempting 10 tailor
jg your implemenution to the user interface, but this temptation should be resisted. No matter now

user-oriented your program is, some User some day will wani to write a program that uses your
spplication airectly. It is besi thai you prepare f0r that eventuality now.

There are four different ways that a particutar function in your program could be invoked:
nmmcuwn of an aser event through the NotityProc, a Call on s pre-defined function in the Viewers
1ass (such as set, get, and save), invokation through 4 bulton or menu item on the viewer, and o
Clloms catl on o investace you export. If you use more than one of these paths to invoke a tunction
YON should be absoluiely certain that they ail have exactly 1he same semaniics, The best way 10 do

Basics

The detinition of
structure and the

this is 10 have them all call the same procedure, Thus the NotityProc that handles special user

actions shonld do no more than gather pnnmelers and dispatch to procedures that are defined in an Icons

interface exported by your program. The same should be true of procedures that are invoked with

buttons and menus, Detsnition and
The (unctions ‘Create’ and "destroy" are special functions in the Viewers warld. All of the Monagement

InitProc and DestroyProc, In particular it is very important that all of the menu Construction,
sub-viewer creation and private data initialization happen in the InitProc, This allows the Viewers
package 1o create and destroy insiances of & Chs! Vlllhonl mvm(o knaw abont mlerl.-l:es exporte
by the class’s implemenation. This is important since opening a deskiop sometimes requires the
se-Creation of a viewer that the user had ummyea AL that the Viewers package can do is s call
iewerOps.C , into; [na: and hope that this is sufficient
10 Create and initislize the viewer, Aypl\callml lools should create lh!lr own viewer's ctass just so
they can have their own InitProc, even it there is never more than one instance of the tool.
Siatitarly, ViewerOps.DestroyViewer{viewer] should be ail the Viewers package needs 1o make sure
1Mal the viewer has Cleaned up all of its internal data stractures, (Cleaning up internal dats
structures includes breaking circular links so the garbage collector will reclaim the storage.)

And there’s n

The Intertace Si
information

Figure 7: Browsing a Tioga document using level clipping to
suppress detail

F11 Scrolling is accomplished by moving the mouse into the scrollbar, a vertical area
at the left side of a viewer, and then clicking the mouse. The scrollbar is visible in
Figure 7.

184

TECTIONS NOT Ve WYINEN), IT YEIIetty TNE STATe O THE VIEWEYS PECKELE 10y CENAY VErsion 1.0, YOI
may be able 1o find a more recent version on [Indigo}CedarViewers)> Viewers) ViewerDoc.tioga,

Introduction

The Viewers Window Package is the arviter of the user input and display hardware in the Ced,
prngrnmmmg environment Here I am in the process of inserting material: the guick brown fox
jumps over It pmvxacs the musxon to the programmer that there is & private display, mouse and

with each while allowing the user 10 simulianeously interact with
many such applications,

The basic object mampumeﬂ by client programs and visible to the user is the viewerz; a
rectangular area with armlrary contents which may be made visible on the user display. A viewer|
takes its name in that it allows the human user to view and interact with the data associated with o
Cedar npphcauon The underlying applxcmuns software has complete control over the d:splnyed
contents of & viewer and has available a rich user interface for user input, The screen position unq
size of a viewer may be modified by the user as well as under program control,

This documentation is written for the programmer intending to use the Viewers Window Packa;
10 build & new application, It is orgamsed along the broad areas of (uncnonamy that the Viewers
system provides and attempts 10 explam design theory and some pragmatics, For exnmples of usag
see the references within each section, and for exact details consult the interfaces ditecily. One
point of notation: used throughou? this document, client refers 10 & program calling the Viewers

Components

Figure 8: Inserting characters into a Tioga document

Commands can be given to Tioga using various control keys, e.g.,
typing a character while the CTRL key is depressed. For example, I'll
undo the insertion | just made with a single keystroke. This ability to
undo editing operations allows the user to recover from mistakes.

Another command that [can give to Tioga is to change the way
characters appear by changing their looks. For example, let me
emphasize a sentence of this document to draw it to your attention by
making it appear in a larger font and underlined (see Figure 9).

The sentence that I underlined makes an important point: users can
and do make heavy use of parallelism in Cedar. It enables them to
start one task before another has finished, and to switch back and
forth among several tasks, e.g., editing, compiling, reading mail.

112 The advanced user can perform this same operation with a single action by holding
down the SHIFT key while scrolling. This is an example of our concern for an efficient
interface for experts. Many systems that boast of being extremely easy to use have the
drawback that they do not allow the experienced user to become much more proficient
with the system than the novice user. For experts, the desire for common operations to
require a minimum of effort can be more important than the desire for the greatest
possible simplicity in the user interface.

t13 To facilitate this parallelism, we have pursued in the design of the Cedar user
interface what might be called the Principle of Non-Preemption: "Individual interactive
programs operate in a non-intrusive manner with respect to the user's activities. The
system does not usurp the attention and prerogatives of the user” [4]. This is especially
important in an environment such as ours where the use of personal machines encourages
using the time when the user is thinking or the time between keystrokes by performing
various background tasks, e.g.. sending and receiving mail, printing, recompilation. and
database maintenance. Such activity loses a lot of its utility and attractiveness if the user
is continually forced to deal with unexpected interrupts from these background tasks.

The Viewers Window Package

Disclaimer

This document is currenily in progress and hence is incomplete (as witnessed by a number of
sections N0t yet writien), It retlects the state ot the Viewers package for Cedar version 4,0. You
may be able 10 find a more recent version on (Indiga)K CedasViewers) Viewers) ViewerDac.lioga,

Introduction

The Viewers Window Package is the asbiter of the user inout and display hardware in (hc Cedar,

umﬁnmmmz envlronmem HGI’QI am in the DIOCEss of msemnz CHAI'SC(QH ovid:

I that there is a disp
mml £

The basic object mampululeﬂ by client programs and visible 10 the user is the viewer; &
recnngnlnr area with arbitrary contents which may be made, visible on the user display, ‘A viewer
1akes its name in that it allows the human user to view and interact with the data associated with a

software fias complete control over the displayed

Cedar i The

Contents of a viewer and has available a rich user interface for user input, The screen position and
size of a viewer may be maditied by the user as well as under program control,
This documentation is written for the programmer intending to use the Viewers Window Package|
10 build & new application, I1 is Organised along the broad areas of functionality that the Viewers
System provides and attempts to explain design theory and some px“mﬂllcs Fot examples of usage,|
ste the references within each section, and for exact details consult the interfaces direcily. One
f notation:

used throughout this document, client refess t0 & program cajling the Viewers

Figure 9: Changing fonts

We aren’t going to be needing this viewer, so let’s destroy it using the
Destroy menu button which is contained in menu that is hidden under
the caption. We do this by moving the mouse into the caption area of
the viewer, which causes the caption menu to be displayed as shown
in Figure 10. Notice that the Destroy button has a line through it.
This indicates that the button is guarded. Guarded buttons must be
clicked twice in a short time interval to take effect.t4 This is to guard
against the user’s inadvertent destruction of useful work. For example,
the first time any edits are made to a Tioga document, the Destroy
button automatically becomes guarded. If we were to go ahead and
destroy this viewer anyway, a new icon labelled UnsavedDocuments
List would be created. If I were to open this icon, I would see: "The
following files were edited but not saved. They may still be restored
with edits intact simply by loading them.” i.e., I could still get my
edits back if [really wanted them.

Destroy Adjust Top <-- --> Grow Close

Clear Reset Get Geumpl PrevFile &wre Save Time Split Places Levels Changelog
Find Word Def Position Normalize PrevPlace Reselect

FirstLevelOnly MoreLevels FewerLevels AllLevels

Inter-Office Memorandum

To Cedar Interest Date December 21, 1982

From Scowt McGregor Location Palo Alto

Subject The Viewers Window Package Organization PARC/ISL
Filed on: {Indigo]<Cedar>Documentation >ViewerDoc.Tioga and ViewerDoc Press.
Documents: [Indigo]<Cedar>Viewers>Viewersdf, as exported by the Cedar boot file.

The Viewers Window Package

Dicalai

Figure 10: The Destroy menu button is guarded to prevent accidents

Such touches as undoing, guarded buttons, and the ability to recover
destroyed edits, are what some might describe as frills. However, we
believe that they contribute a surprising amount to programmer
productivity. They allow the user to move ahead quickly with the
confidence that he will be able either to avoid disaster or to recover
from it. We have placed a great deal of emphasis on them in the
design of Cedar.

14 The first click removes the guard. If a second click does not occur within a
specified interval (about five seconds), the guard is restored. We feel that this interface
is preferable to having the system enter into a confirmation mode; the latter would
violate our principal of non-preemption.

185

The UserExecutive

An increasing number of users of Cedar are non-programmers; they
use Cedar to prepare documents and read and send mail. However,
Cedar is primarily a programming environment. So let us now focus
our attention on the programming aspect of Cedar. To do this, I'll
open up a UserExecutive. Notice that | said @ UserExecutive, not the
UserExecutive. Consistent with our philosophy of providing
parallelism, there can be several instances of the executive, each with
its own state, and performing its own operations.

Each instance of an executive is associated with a viewer called a Work
Area through which the user interacts. Commands are typed to the
executive by typing to its viewer, and its output is displayed in the
same viewer. At this point in the demonstration, there is only one
instance of the executive; it is associated with the icon at the lower
right of Figure 6 that looks like a scroll and is labelled "A: Executive.”
I'll open this icon in the usual way, and then move the mouse into
the resulting viewer and click it. The executive is now listening to me,
i.e., it will see the characters that I type.

The UserExecutive implements various standard executive functions
such as accessing the directory system, compiling, binding, loading,
and running programs. Each interaction with the UserExecutive is
called an event, and consists of a command name, followed by any
parameters. The user can request explanatory information about a
command or its arguments by typing "?". For example,

&7 run?

Run Load and Start the named programs.

The "?" indicates that I want to see more information about the
preceding subject, in this case, the run command. The UserExec tells
me that this command is used for loading and starting programs. I'll
use the run command to run the program Watch, which is a
performance monitoring tool that periodically samples and displays
the words allocated, cpu load, and page faults, 715

&8 run watcch
watcch -> watch
Loaded and started: watch.bcd

I misspelled the name of the program to be run. In most systems, this
would cause some sort of a FileNotFound error to occur. Instead, the
Cedar spelling corrector was invoked, and given the name "watcch”
and the context "a file to be run,” quickly produced a file which was
reasonably close in spelling. This automatic correction of "watcch” to
"watch" is an example of what we call DWIM, short for
Do-What-I-Mean. The Cedar DWIM facility is patterned after the
Interlisp DWIM facility in philosophy and style [13].

The UserExec has loaded and started the Watch program, which
created an icon for the Watch tool. I'll open the Watch icon, and we’ll
observe the Watch tool in action as 1 execute another event in the
UserExec (see Figure 11).

The Interpreter
One of the valuable lessons we learned from Interlisp and Smalltalk

was that the availability of an interpreter greatly facilitates debugging
and testing, even when the programs being debugged are themselves

$15 Since Cedar programs are often written in expectation of production use of the
program, performance monitoring and tuning is an important issue. The Watch tool is
just one example of a number of such tools available in Cedar. For example, a much
more elaborate and precise performance tool is the Cedar Spy, developed by John
Maxwell. "With the Spy, the programmer can see which procedures are consuming
CPU cycles, which are causing page faults, which are using the allocator, or which are
calling a particular procedure. When the programmer narrows his focus to just one
process, the Spy will tell him where that process is spending its time, where it is waiting
on page faults, where it is waiting on monitor locks, where it is waiting on condition
variables, and when it is preempted by other processes” [9].

&7 run?
run Load and Start the named programs.
&8 run watcch

watcek -) Wawch

Loaded and started: Watch bcd

&9 list *.press
figurel.press
figure2.press

105472 31-Aug-83 12:09:06 PDT
103472 31-Aug-83 12:09:29 PDT

100 1000 10000

aults 6055 1 3 10 30
equests 16218 disk 4423 gfi 104 mds 27 VM 3593 VM run 2468
16000 done. (GC#4S got 17194 words, 1305 objs)

2 CIFS status (inverted iff active)

Figure 11: The Watch Tool monitors program activity

EditTool

totally compiled.T16 Thus, the Cedar interpreter is an important and
integral part of the Cedar environment, despite the fact that Cedar is
a compiler-oriented language.

To show you how the Cedar interpreter works, let’s interpret some
Cedar expressions. I'll create an interpreter Work Area by clicking the
New menu button at the top of Work Area A. (This menu can be
seen in Figure 15.)

The Cedar language includes the data types found in most modern
programming languages, such as integers, reals, booleans, characters,
arrays, pointers, records, etc.

For example,

&1 «3 + 4

7

&2 « ABS[1.414 * 1.414 - 2,0] < .001
TRUE

The first event, &1 « 3 + 4, really means assign the value of 3 + 4
to the variable &1, and 1 can refer to this value in later expressions.
For example, let’s multiply it by 1.4:

&3 « &1 * 14

9.8

The Cedar interpreter also allows me to perform operations on fypes
as well as values. For example, typing ? following an expression will
show the type of the value of the expression.T17

&4 « 327

is of type REAL

&5 « ’'X?

is of type CHAR

&6 « Time.Current?

is of type PROC RETURNS [time: System.GreenwichMeanTime]

In the Cedar language, is used to denote field extraction. For
example, x.y means the field of x whose name is y. In this case, Time
is the name of an interface, and Current names a procedure in that
interface. An interface is like a contract between implementors and

116 Actually. all Smalltalk expressions that are input by the user are compiled before
execution, although it is not clear that Smalltalk users are (or need to be) aware of this
operation. The important point is the ability to create and execute program fragments in
a specified, dynamic context. Whether this is done via a separate interpreter as is the
case with Interlisp, or by compiling each expression as Smalltalk does. is simply an
implementation issue.

17 Note that we are not just talking about primitive, built-in data types, such as
integer, boolean, string, etc. Cedar encourages the programmer to augment the collection
of predefined types by constructing new types defined in terms of built-in or previously
constructed types. In a typical Cedar system, there may be over a thousand such types.
Thus, for the purposes of debugging, knowing that a particular object is a pointer to a
word containing all 0’s may not be anywhere near as informative as finding out that
the object in question is of type REF Foo, rather than REF Baz, where both Foo and
Baz happen to be synonyms for the type INTEGER.

186

clients. It declares that a procedure of a specitfied name, such as
Current, takes certain arguments and returns certain results. The Cedar
compiler can then make sure that any programs that import (use) this
interface conform to its specifications. The compiler also checks that
the implementation module conforms to the same specifications. 18

Let’s call this procedure. It takes no arguments.

&7 « Time.Current[]
Thursday, September 1, 1983 12:33:21 pm

Its value is of type:

&8 « &7 119
is of type System.GreenwichMeanTime

The reason that the value of Time.Current in event number 7 prints
so nicely as a day, date, and time, rather than as a 32 bit quantity, is
that a PrintProc has been associated with the type
System.GreenwichMeanTime. A PrintProc is a procedure that
provides a more desirable way of presenting an object of a certain
type, rather than simply printing its data structure using the default
methods. The PrintProc facility is quite useful for dealing with large
and complicated data structures such as viewers, documents, and
streams, where the user typically just wants to be able to identify the
object, rather than seeing its actual structure. Cedar includes a number
of PrintProcs for just this purpose. In addition, individual users may
define new PrintProcs for their own types.

Automatic Storage Management and REFs

In the early stages of planning for Cedar, one of the features that
received the highest priority was automatic storage management — a
garbage collector. The Cedar language was extended to include a data
type called a REF, which is a pointer to an object in collectible storage.
In addition to REFs to particular types, such as REF REAL, REF BOOL,
REF PROCEDURE, etc., the Cedar language includes a generic REF type,
REF ANY.T20 Atoms, which are very similar to Lisp atoms, and Lists
are also examples of REFs. T21

For example, let’'s make a list of some of the values that we just
computed.

&9 « LIST[&1, &2, &3, &7]

(t7, 1TRUE, 9.8, tThursday, September 1, 1983 12:33:21 pm)
&10 « &?

is of type LIST OF REF ANY

Since each of these objects is of a different type, the type of the value
of event 9 is LIST OF REF ANY. Note that the first element is really a
REF INT, the second a REF BOOL, the third a REF REAL, etc. In other
words, the type of &9.first, the first element of this list, is REF ANY,
but the type of the referent of this element, &9.firstr, is INT.

Manipulating Lists

The List interface includes a variety of procedures for manipulating
lists, such as Append, Reverse, Remove, Union, and Intersection.

118 The notion of abstraction mechanisms and the explicit notion of interface was an
important item in our original catalogue of programming environment capabilities [4):
"Abstraction mechanisms are important because they make explicit the logical
dependencies of one part of a program on another, while concealing the implementation
choices irrelevant to the communication between parts. Thus, these mechanisms enable
the ability to factor the development, debugging, testing, documentation, understanding,
and maintenance of programs into manageable pieces, while leaving individual
programmers the appropriate freedom to design those pieces” [4]. The author believes
that the abstract notion of an interface is one of the great strengths of the Mesa
programming language. However, the need to specify interfaces in advance can also be
cited as a weakness of the Mesa approach. Certainly, the present need for vast
recompilations whenever a fundamental interface is changed, even in a backwards
compatible fashion, is a weakness, but one that certainly can be reduced and maybe
even eliminated (for example, by maintaining version stamps at the interface item level,
rather than at the interface module level as is currently done).

119 The value of the variable & is the value of the last event execute, i.e., in this case
& and &7 have the same value. 120, 21 (see next page)

Let’s try the procedure Reverse on the list constructed in event 9.

&11 « List.Revers[&]
Revers -> Reverse ?

I misspelled the name of the procedure causing an error to occur, i.e.,
the procedure Revers was not found in the set of procedures contained
in the interface List. DWIM was invoked and searched through the set
of items declared in the interface List.7?2 pwiM found a procedure,
Reverse, whose spelling was pretty close to what I typed, and in
Figure 12, is now waiting for me to confirm or reject the correction,
which I can do via the keyboard, or by clicking the Yes or No menu
buttons which have been added to the Work Area’s menu for this
purpose.¥ When (and if) 1 confirm the correction, the corrected
expression will be evaluated.

120 A recurring theme in our discussions of requirements for an experimental
programming environment centered around the issue of early versus late binding of
various implementation decisions. "The key property of the programming languages
used in exploratory programming systems is their emphasis on minimizing and deferring
the constraints placed on the programmer, in the interests of minimizing and deferring
the cost of making large scale program changes. ... The languages make extensive use
of late binding, i.e., allowing the programmer to defer commitments as long as possible”
[12].

The addition of the type REF ANY to the Cedar-Mesa language represents an attempt
to provide for one form of late binding; use of the type REF ANY enables an
implementor to defer type checking from compile time to runtime on a case by case
basis. Note that in the Lisp programming language. every item is effectively a REF
ANY: all objects are pointers, and the type of each object can always be determined at
runtime. As a result, certain classes of errors can remain undetected untit a program is
run, perhaps even until the program is run on particular data. At the other extreme,
the Mesa programming language requires the specification of the type of each object at
compile time. Consequently, unanticipated modifications or extensions to Mesa programs
often require changes to type declarations and recompilation of interfaces and
implementation modules.

In Cedar, we wanted the best of both worlds: the flexibility of runtime (dynamic) type
checking and the reliability and performance of compile-time (static) type checking. We
hoped that by employing REF ANY in the early stages of development. programs could
opt for more flexibility at the expense of performance and/or runtime errors. As the
program matured, various binding decisions could be made earlier by employing specific
types where appropniate.

Another important use of REF ANY in Cedar is to enable generic programs. Since
programs can determine the type of a REF ANY at runtime, they can operate differently
depending on the type of the object they are given. For example, the same Sort program
can be used to sort lists of integers, reals, strings, or even viewers, by selecting the
appropriate comparison algorithm based on the type of the objects being compared.
The capability provided by REF ANY is also essential for enabling object-oriented
programming. For example, streams, viewers, and ropes are all objects in Cedar whose
definition consists of a block of procedures along with a datum which contains the state
of the object. Since the type of the datum is different for each different implementation,
for example. file streams need different information than keyboard streams, the datum
is represented as a REF ANY which the individual procedures can then interpret.

21 A List in Cedar is a REF to a structure consisting of two fields, first and rest.
The first field contains the element of the list and the rest field the tail of the list (the
Lisp CAR and CDR). Cedar provides language support for the construction of lists (via
LIST and CONS), but no polymorphism; it is not possible to write a program that
traffics in LIST OF T without specifying T at compile time. Since most programs using
lists employ lists of specific types, the absence of polymorphism means programmers
must (re)implement for each specific type list primitives such as Reverse, Append,
Union, and Intersection. This absence of polymoprhism is cited as the biggest
shortcoming of the current implementation.

$22 When we first began work on Cedar, some thought that the complexity of the
Cedar language would make it too difficult to implement any sort of automatic error
correction facility such as was available in Interlisp. However, this very complexity turns
out to be of great benefit for error correction in Cedar expressions, because more
information is available at the time of the error than in Lisp, where all the interpreter
knows is that an identifier is unrecognized and whether it was used as a function or a
variable. For example, when the user typed List.Revers above, DWIM was called given
the identifier "Revers”, the message "selection failed”, and the context the List interface.
DWIM knew that it was looking for an element defined in the List interface. which
immediately narrowed the search down to 42 possible candidates. Similarly, List.Subst
is a procedure which takes three arguments: new, old, and expr. If the user types
List.Subst[new: $Foo, old: $Fie, exrp: x] (misspelling the name of the third argument),
then DWIM only has to consider three candidates. For assignments, the type of the
target can also be used to guide the correction. For example, if x is declared to be of
type Color, where Color is an enumerated type consisting of {red, green, blue}, and
the user writes x « bue, then he probably means blue, whereas if x is of type {feature,
nonfeature, bug}, and the user writes x « bue, he probably means bug.

187

No

X

&6 « Time.Current?
is of type PROC RETURNS {time: System.GreenwichMeanTime]
&7 « Time.Current[]
Thursday, September 1, 1983 12:33:21 pm
&8 « &7
is of type System.GreenwichMeanTime: TYPE = RECORD[LONG
CARDINAL]
&9 « LIST[&1, &2, &3, &7]
(*?, +*TRUE, +9.8, +Thursday, September 1, 1983 12:33:21 pm)
&10 « &7
is of type LIST OF REF ANY
& 11 « ListRevers{&)
Revers -» Reverse 7

~

Figure 12: Confirming a DWIM error correction

&11 « List.Revers[&]
Revers -> Reverse ? Yes
(*Thursday, September 1, 1983 12:33:21 pm, 19.8, tTRUE, 17)

Ropes

Cedar also includes another useful type of REF called a ROPE. A ROPE
is Cedar’s standard string type.’r24 The input syntax for a ROPE is a
sequence of characters delimited by "’s. For example,

&12 « "this is a rope"
"this is a rope"

&13 « &?

is of type ROPE

Just as the List interface provides operations for dealing with lists, the
Rope interface contains a variety of useful operations on ROPEs. For
example, Rope.Find is a procedure that searches one ROPE for the
occurrence of another.

&14 « Rope.Find?
is of type PROC [s1: ROPE, s2: ROPE, pos1: INT « 0, case: BOOL
« TRUE] RETURNS [INT]

This tells us both the names and the types of the arguments that
Rope.Find expects, and that it returns an integer. (This integer
indicates the character position in the first ROPE at which the second
ROPE begins.) Let’s try it.

&15 « Rope.Find[

At this point, instead of retyping the ROPE "this is a rope", I can
simply select the corresponding text in event number 12 using the

123 In general, we try to give the user the choice of performing operations either via
menu or via the keyboard. The main reason for this redundancy is that if the user's
hands happen to be on the keyboard, it is more convenient to interact through that
medium rather than having to reach for the mouse. Conversely, if the user's hands are
already on the mouse, it is easier to click a menu button than to reach back to the
keyboard. The use of menus in conjunction with confirmation provides the added
benefit of allowing the system to handle gracefully the issue of typeahead and its
potential interaction with confirmation. Consider the case where the user has entered
some operation, and then typed ahead the next operation not realizing that the first
would require confirmation. The desired behavior of the system is that the user be able
to confirm without having his typeahead affected, i.e., that he not have to retype it after
confirmation. This is accomplished by requiring that the user only confirm via menu
once there has been any typeahead.

124 A ROPE is a garbage-collectible sequence of characters. ROPEs are immutable;
the sequence of characters denoted by a ROPE never changes. Thus, ROPEs may be
shared freely among independently-written applications, since no application can hand
out a ROPE and have some client free its storage or alter the characters it contains.

mouse, and cause the characters to be treated exactly as though they
had been typed. I can do this because this Work Area I have been
typing to as though it were simply a glass teletype is really a full-fledged
Tioga document, and | can make use of any of the facilities of the
Tioga Editor when constructing expressions to be interpreted. For
example, if 1 hold down the SHIFT key while selecting in a Tioga
document, the selected material is displayed with a gray underline (as
is shown in Figure 13). Such a selection is called a source selection.

Find Split New Stop Compile Eval Redo Set Clear
CARDINAL]
&9 « LIST[&1, &2, &3, &7]
(+7, +TRUE, 19.8, +Thursday, September 1, 1983 12:33:21 pm)
&10 € &?
is of type LIST OF REF ANY
&11 « List.Revers[&]
Revers -) Reverse 7 Yes
(*Thursday, September 1, 1983 12:33:21 pm, +9.8, +TRUE, +7)
&12 « "this is a rope"
“this is a rope”
&13 ¢ &7
is of type ROPE
& 14 < Rope Find?
is of type PROC [s1: ROPE, 52 ROPE, posl: INT « 0, case: BOOL «
TRUE] RETURNS [INT]
&15 < Rope.Find&

Figure 13: Copying displayed characters instead of typing them

When 1 release the SHIFT key, this source selection will be copied to
the current insertion point, i.e., the place where the caret is. 2

&15 « Rope.Find["this is a rope", "is a"]
5

The value § indicates that the second ROPE begins at character position
5 in the first ROPE.

This gives you a general overview of the Cedar interpreter. Now let’s
try using the Cedar system in earnest.

Tracking Down a Bug

Earlier when | typed Rope.Find? in event 14, the system simply told
me the names and types of the arguments and return values. I thought
that the system was also supposed to show me the comments associated
with the procedure Find in the Rope interface, so that [would know
what the various arguments and the return value meant. Let’s create
a viewer on this interface and see if there are any comments associated
with this procedure. I select Rope.Find in my Work Area, and then
click the Open menu button in the message area at the top of the
screen. This tells the Viewers Package to create a new viewer, load the
file Rope.mesa into this viewer, and then search for the definition of
the procedure Find, which it has finished doing in Figure 14.

As you can see, there are comments here. Let’s try to find out why
they weren’t shown when I typed "?". To do this, I am going to plant
a breakpoint in the code that implements the ? feature of the
UserExecutive. First, | create a viewer on the corresponding source

F25 This feature is tremendously useful. It greatly increases the bandwidth of the user’s
interaction with the system. It also enables us to use long and descriptive identifiers,
such as 10.CreateEditedStream, UserExec.FindExecFromViewer, and
ViewerTools.GetSelectionContents, even though many of our users are not fast typists.
Such long identifiers are tolerable because they rarely have to be typed, but usually can
be copied from somewhere else on the screen, e.g.. fror a viewer on the interface that
defines them. (Note that having to read long identifiers in programs is nof a burden
but an asset: the name contains so much information it is in effect a form of
documentation.)

eor Set \me Zpx Paces Levels Shangelos e
Floo wom Cei Powion Nommanze FPrevPlace Ressisct Apuredpress
EiLeeionty Marerevts Femertevts AliLevels fpures press
figures.press
Patch seoc (e aoreinder iat < 8] aETuRas (e CRar) Dgutes pesss
 fewhes indozad character (rom iven ropes NewStf! press
- BoundsFault oocurs if wndex 1+ e Fope %8 remember press 905
Screen @ press fint |s. u 196109 pT
“lﬂ JPC Ll 3L ovt port ter 0, ce woos - vuue] wrruns (oun) Screen . press ‘
ike indes recueny pbthon in 31 where 12 oceurs st lookn spel pras
wms -1 if nor tound serErec uogs press
T hvear 18 grancans serPratite press

x oy
5308 o Mar 43 1ot

Userbraniedos press i e B ror

Toal of It Dles. 2321 paes

zoms cue woou - caun] aervaws), am

o e s 1 ngmaheant
LEmpty moe I aose} nzrures (300t),
- recurns Lengje] - 0

Lengia raoc Tbase xorr] mevuus [ier],
Tenuns the lengih of the rope (Length[NIL] « 0,

Eeptace raoc
Thase ROPE. SUFL [T + O, len MY + Marlen, with Ro%E - W]
Ezroans [ior], Fours b1 1 3 0

A e e e L B g e T,

Woras 1310324 L 1 100 lonaionoa
CPU Loat

16000 [GT] dome (GC#31 gor 16342 words. B3 vbs)y
Sze yroc base 207] aeToas [nel = arss meertag aff mrtve
2 Azefowe] - Longinfbase] [Sanpicllnterval) : _£175 sutus anveried att wcuve)

Bobstr raoc (b sone. s iwr 0. len w7 ~ MasLen] nerunus (rose]. &
rerurns 3 subrape of in .-umn Ty
< BoarsFoult berors i the-ranse preen is mot vaiid a9+ LIST[AL 82 4% 47]
L7, TRUE. 158, Thursdar. Sepiember 1, 1361 123) 21 by
<harscier conversions (KA se5 why we thex heres
15 ivee LIST OF REF ANY
Comtrol 7hoc [ch can] a€ToRwS [CHar] 4 tmiime { art - TinReversa,
Erown T b e T 1 TR En L anaoortier pisE Ch] overs Roverse
sany. !evwnhul 1995 123821 pm, v 4, STRUE, »7)

::.,.. e G T e o s T g o
"

Lower 5o [ch fwar] METURMS [cnan) - piuoeE 7 iyp PROT (3t RGPE. 51 FOPE. pos) INT + b, case DOOL =
atoax [13 th 1n LA) Txem ch ¢ CaseOffast 21st €n] nuz] Ketueie (inr) .
1513 & rope”, “1s &

cvar mnc [ch cnan) arrunns (soca] - mamme ¢ e
T (AR]

DURIL a0C [eh cuas) azTuRNs [s00L] « LINE {
evpax fchre [0 5]}

= . Y

=

Figure 14: Access to program sources provides online documentauon

file, scroll to the appropriate location, and then select the place where
I want the breakpoint inserted.t20 T then plant the breakpoint by
clicking the Set menu button in my Work Area, 2

&16 SetBreak UserExecMiscimpl.mesa 13897 Break # 1 set.
Break #1 in UserExecMisclmpl.PrintDeciFromSource (source:
13891)

pattern « TiogaOps.CreateSimplePattern[target]; -- creates a
pattern for the search.

The breakpoint has been set.T2 The system provides feedback by
displaying in my Work Area the corresponding line of source text with
the location of the breakpoint underlined, as well as by underlining
the corresponding location in the source viewer (in Figure 15, the
bottom viewer in the left column).

Now let’s reexecute Rope.Find?. 1 can do this by simply selecting
anywhere inside of the corresponding event in the Work Area and
clicking the Redo menu button. The UserExecutive maintains a history
of the events that have been executed.™ It uses this history list to
find the event corresponding to my selection and reexecute it. 30

126 The reader may wonder how | knew where to place the breakpoint. In this
particular case, I happen to be familiar with the internal workings of the UserExecutive.
However, it is not at all uncommon for Cedar users, especially experienced ones, to
poke around in other people’s code, planting breakpoints, and examining data. This
behavior is facilitated by the structuring of the source files that Tioga enables, and by
the use of long. suggestive names. As a result, it is not uncommon for a bug report not
only to describe the symptom, but to identify the offending line of code.

F27 Clicking the Set menu button causes an appropriate command line to be constructed
and input to the UserExecutive, rather than executing the operation directly. This
technique provides the user with a record of all of his interactions with the executive
and enables him to examine or replay them at some later point.

128 Setting a break point involves finding the place in the object (compiled) code that
corresponds to the indicated location in the source, and then inserting a special
instruction that will invoke the breakpoint machinery. The Cedar compiler facilitates
this process by constructing as a by-product of compilation a table that contains for
each statement the mapping from the object locations to the corresponding source
location. However, most users are unaware of this process, and simply think of and
treat the source file as the program. Cedar goes to great lengths to encourage this model.

129 The notion of a history list and facilities for manipulating it came from Interlisp.
We have not yet implemented the notion of Undo as applied to events that Interlisp
provides, partly because it is harder to capture all of the side effects of an operation in
a language such as Cedar, and partly because other tasks were given higher priority.

130 The user can also reexecute events by selecting the characters that were originally
typed while holding the SHIFT key down, as was done in event 15. The principal
convenience of the REDO menu button is (a) the user can simply select anywhere in
the event, and (b) multiple events can be reexecuted by selecting a range that spans the
desired events.

&17 Redo 14

>« Rope.Find?

is of type

Break # 1 in UserExecMiscimpl.PrintDeclFromSource
computation suspended, switching to Action Area C...

(and down below a new Work Area pops up in which appears:)

Action # 1 (kind: break, process: 173B) (from Work Area B)
Break # 1 in UserExecMiscimpl.PrintDeclFromSource
pattern « TiogaOps.CreateSimplePattern[target]; --
pattern for the search.

annlw\nq
gy Pl Plores Levels "hangetor

Sors Tet Podtion Nermaize ErevPiae Kesetect
FiLeveroniy - Mareveven Eoweaiencs AlLeves 4

creates a

o LIST OF REF ANY
a x..uxmn(
Pesch. raoc [ome xove, inder my - 9] wxrongs fc cuanl. e

~frches mdeaad chusscir o 1ven opes Thorsaay Sepember 1, 199 131320 pm. 98, (TRUE. %0
-~ BoundsFault cccurs if index 13 -+ e rope biZe 12+ s 13 3 rope
Fina saoc o152 ore ot et - b cae poor - sau] aztons el &
o R

'returns positon 1 37 where 52 0Ccurs WU looking 3t posii
mulm Aurm round
G« Case of Characisrs 1 sigaicant

o e R (o1, ROPE, 53 ROPE. st INT - b, case BOOL =
Treroene)
Find(this 15 » rope”. "1]

PRy ——
Bk ¥ GuerBrecMiucingl PrniTecir meourcs uaune s

"L 3ore, post e« 0,52 sost. case 0oL - Taoz] asrones [l

~Rewuens whe sales chavacter poncan N yuch that
urs tn 33 91 N and N s posl

. do0s nor
Tiorays Creawsimpiepaernfus).

paern
partern 1or we
BRmpty swoc 1 vovrl arronss frooL,
ns Leusajt,
Leag moc fbwe soml sizvams [l
Terurms the lengd of the rope (LenginNL) o 0

Replace

Toowe KOsk, naex Dot < 0, den w3 -~ Maslen. with s03t = win]

4178000 1t
Find*

or e
B 1 i iererechtsetnpy prniecirrmSoores
CompuIIan SuspeBded, TRIEAIRS © ACOOR Ares

I Places angeLor

o e
oty Der Posion Narmai Proveed” abowe Source_ Walksuck _ShowFrame
P eveionty - Moret evets " Fewerievens AlLevels

1ooking up declaratisns in fite

Acton =1 (kg wreat, srocess 308) (o Work Areo B)
Bredi' in Userbsechsclm brincbuele romcou
PriaweciFramsearce pUILIc PAOC [Urgel nove, file RoFT. exec UserExec EsecHendle] padp CrestesimpisPatiornfiargel], - " eeaves 3 parrn
Arroaw) [value sooieaw] s

Ut (0.37htam ¢ UsaeErec GeiSueams]jout. BN
i . Aos MakeAGm [N,

Trusmes {ax - Leormotz{Alom Serop{aws Hieawm. piop Tonil).
doc ¥ Wiz Thew oL
"ViewsrOps FindViewor(file]) # w11 tex doc -
Tiagadps ViewerDuctoiewrr
Proplsom: fleAtom, prep: SKoot, val doe + TiogaPrualp: Getuie[file *
i mm coxTall,
Wo Fasse, aerory:

,Hm ofog e Erenthin b e s Ee) - craats 3 poiet 101 the smarc

T2 of Prmaecirromsouree

=]

\/m

Figure 15: Hmmg a breakpoint

Breakpoints and Action Areas

Whenever a breakpoint is encountered in Cedar, the corresponding
process is suspended so that the user can examine the state of the
computation. We have found it useful for these interactions to take
place in an entirely separate Work Area called an Action Area.t3! In
Figure 15 we see that a new Action Area has been created. This Action
Area tells me that I am at a breakpoint that arose out of an operation
in Work Area B. It also tells me that the breakpoint is in the procedure
PrintDeclFromSource, and shows me the line of code in which the
breakpoint occurred.

The first thing I want to do in this breakpoint is to examine the
arguments to the procedure PrintDeciFromSource. To do this, I click
the ShowFrame menu button in my Action Area.

&1 ShowFrame args

A- target: "Find\n",
file: "Rope.mesa”,
exec: {UserExecHandle: "B"}

UserExecMiscimpl.Pri nTt:l‘)2ecIF romSource

133

The debugger tells me that this procedure, PrintDeclFromSource, has
three arguments, target, file, and exec. The values for file and exec
are ok, but the value of target should be "Find" rather than "Find\n".
Let’s see if this is the only problem, i.e., if target were "Find,”" would
the comments be printed? I'll reset target using the interpreter.

&2 « target « "Find"
“Find"

431 This method also supports the Principle of Non-Preemption espoused in footnote
13. The user is not required to deal with this action at this time. He can continue editing
documents, create and interact with other executives, read his mail, etc., and this action
will wait for him. Another benefit of separate Action Areas is that it enables the user
to keep track of the flow of control if another action occurs while pursuing this one.

$32 \n is how Cedar prints carriage-return when it appears as data.

$33 The printing of UserExec handles is another example of the use of PrintProcs.
The actual handle is a fairly complicated data structure.

189

Now I'll allow the computation to continue by clicking the Proceed
menu button, and we’ll see if the comments from the Rope interface
are in fact printed in Work Area B above.

&3 Proceed
proceeded Action # 1, returning to Work Area B

F T T L dadadadad

(and in Work Area B above:)

PROC [s1, s2: ROPE, pos1: INT « O, case: BOOL « TRUE] RETURNS
[INT;

-- like Index, returns position in s1 where s2 occurs (starts
looking at pos1)

-- returns -1 if not found

-- case =) case of characters is significant

and sure enough, there are the comments.

Having identified the nature of the problem, now we must find out
the cause - why is the wrong value being given for target in the first
place? Let's redo Rope.Find? again.

&18 Redo 17

>« Rope.Find?

is of type

Break # 1 in UserExecMisclmpl.PrintDeciFromSource
computation suspended, switching to Action Area C...

and we are back at the breakpoint. Now I'll use the WalkStack menu
button to climb the call stack. Each time we click the WalkStack
menu button, we climb the call stack one frame.

&4 WalkStack

Now we are at the frame corresponding to the procedure that called
PrintDeclFromSource. I'd like to look at the source code
corresponding to this call. I click the Source menu button, and the
system will find the source and display it in a viewer on the left. 34

&5 Source userexecmethodsimpl.mesa 3822
IF_NOT UserExecPrivate.PrintDeciFromSourceftarget: target, file:
fileName, exec: exec] THEN target « NIL; -- to indicate that it didnt
find it in file

UserExecMethodsimpl.Help

TR T GY R R
[rirs s 51 91 W a0 0 it 33 does
o o st oot 3 remb 5 reroened

mm ¥ ile Seve Time SpIit Places Lovels Changelog

Pl
et Posuon Normalize Reselect
2 ot evers Fenelteveis. AlLeves

up declarations in file

Eon yuspanded, TeTERnT 10 XChET ATes T Wo¢ BT %
.on Posl: INT + 0, caie 300L + TRUE] AETURNS (1T,
hke Inder, revstns pauton tn $1 whete 32 oGTURs (StrL

o
ase < Casg of CAIAC S 18 SIERUNCHNE

210 Redo 14
+ Rope.find?

120f 1

Zrosk #1 in UsstEvechiclmpl PrnDecttromSoutce.

computstn s Swnhing © Acuon Arss ¢

FromSource: PUILIC PROC (Urget: koY, file. novE, exec: UserExec ExecHondie)
s [veloe 2aorzse) «
™ ¢ UsetExec Getsweans| Jout,
"+ Atom Makeawm{fie].
ind o0t ap X Clear
Proceed” weert Soutce_WalkSck ShowFrame

L ote Acon 1 Gond: baak, procms. S04B) (10 Sork e 9
Break #11n UserExecMiscim \D—chmmsa
B o sraza agere ~ oty s Creaesumpleaern Al ey - crovis $ pocetn
e “"’""’"‘l"“" Getprop{aon: DleAwom, prop: $hoot]]}: G5 Srvwroums sty GserBrecMIscimpl PrimtDeF ramSource
AL A e g’
e
ey Prevhile a Nt Ploces Levels Thangelok -
Positon Normaize Prevplace Reseiect P ‘""’“""‘“"’ d
7 MoreLeoels fewpilevels AllLevels !
Q- Rops Endfexperope.~) & |~ T o7 orm 9, Toder an wb<
g, Fepe Fndls | exprrope. Taa)eeiy
e Bonc R Subsu{ved. 61b8 ope. Jem 1] *mesa
une(e Rove Bubsataise aphrome. S L3 1. Ton Ropt Len (A LoTPr Fope] 3

3 Proceed
Praceedes Action 1, sturning © Work Ares B

acuen 2 (ki break, proces: 2048) (from Work Ares B)
07 UserSrechmvae PrnDIFTonSourGelargeL. iget, e oleName, exec Bresk #1n UserExecMisclmp! PrintDec|Fromsol
'Sloc] THEM targer v - 1 indicate that 1 cadnc nnd 1110 Dl (a0ps CromtsSimpleFaETm{IarEer]s - craves pocern
X 1or the searc
A& maisecr UserExscMethodsimpl Help
A3 smrer useresecaethodsimplmesa 342

UserErechrivat PrinDeclF onSourcelarget. arget, bl

e hat it

<
B, vngerType Type.
da Andtres xaor
Nome ciec caec] Tz wiEes « WL - i
p - TV value). adns e 11 4
UndarType' DnderType(ivels
Ciass + TypeClass[underT;

Figure 16: The Source command finds the locauon in the source file

The underlined location in the viewer on the left in Figure 16 is the
point in the procedure UserExecMethodsimpl.Help that corresponds
to where the computation is right now, i.e., the statement from which
PrintDeciFromSource was called. Notice that immediately before this
statement is the expression: target « Rope.Substr[base: expr.rope,
start: i + 1, len: Rope.Length[expr.rope] - i - 1]. This expression

134 This operation involves using the compiler’s statement map to perform the inverse
mapping from that of planting breakpoints, namely given a location in object code, find
the corresponding location in the source. If the source file is not on the user’s local
disk, but is part of the released system, i.e., is contained in the version map (see footnote
4), the file will be automatically obtained from a file server.

uses the procedure Rope.Substr to compute target as the substring
of expr.rope that is len characters long, and begins at position start.
We already determined (in the previous breakpoint) that the value of
target at this point is the ROPE "Find\n", instead of the ROPE "Find.”
Let’s find out why this is the case by examining the arguments specified
in the call to Rope.Substr. First, we'll find out the value of the
argument named base by evaluating the expression expr.rope. We
can do this by simply pointing at the expression in the source viewer
while holding down the SHIFT key, thereby causing the characters to
be copied into the interpreter Work Area, the same as we did earlier,
even though in this case we are copying characters from one viewer
into another.

&6 « expr.rope
"Rope.Find\n"

That’s what we expected. Similarly, let’s check the value of start, the
starting position for the substring, and the value of len, the length of
the substring.

&7 «i + 1

5

&8 « Rope.Lengthlexpr.rope] - i - 1
5

Here is the problem, an off-by-one bug. If we don’t want the \n to
be included, there should only be four characters in the substring,
instead of five. In other words, the length argument should be the
length of the entire ROPE, minus the start position, minus 1 (so as not
to include the last character), i.e., Rope.Length[expr.rope] - (i + 1)
- 1. Let’s make that change in the source.

1 make the edit using Tioga, and then click the ChangeLog menu
button. This automatically constructs a change log entry (see Figure
17) containing my name, the date, and a list of those items that have
been changed. It also provides a space for me to fill in a comment
describing each change. | fill in the comments field, and then save the
file using the Save menu button.

viewer: ViewerClasses. Viewer;

pattern: TiogaOps.Pattern;

start, end: TiogaOps.Location;

found, inline: soOL;

T ROPE;

stream: I0.STREAM;

TRUSTED {doc « LOOPHOLE[Atom.GetProp[atom: fileAtom, prop: $Root]]};
1z doc # NIL THEN NULL

Clear Reset Get Getmpl P s Levels Changelog
Find Word Def Positon Normalize PrevPlace Reselect
FirstLevelOnly MoreLevels Fewerlevels AllLevels
Bdited on May 24, 1983 10:28 am, by Teieiman
changed call w GetToken in escapecomplete w use IDProc rather wan TokenFroc because of Nid
names contyning -, .5, Horning tied ivping Larch-H ESC and got "No maich”
changes w! Escape
Edited on September I, 1983 12:51 pm, by Teiweiman

-hanges ! Helph 4

Figure 17: Automatic Change Log maintenance

Now let’s go back to the Action Area on the right, and since we are
finished with this problem, let’s just abort the action and control will
return to the Work Area from which the action originated.

Electronic Mail

The next thing I want to do is to fix a bug that was reported to me
in a message. As | mentioned earlier, the mail box shaped icon in the
lower right corner of the screen (see Figure 1) is my Walnut Control
Panel. I'll open it now. As the flag on the mail box icon indicated, the
Walnut Control Panel tells me that 1 have new mail. I click the
NewMail menu button in the Walnut Control Panel to retrieve these
messages from the mail server. These messages will initially be placed

in my Active message set, represented by the icon that looks like a
stack of envelopes. I'll open my Active messages and we will be able
to see my new mail. 35

oSt Tl be posicd o T emter 251983 1533 am For §0 mnos

v Gedmp) e e Jime Dol Tawes Levels changelog
Find Wors Tel Pounan Rommalize brevPlme Resect
Einteveionly Morebevels Fewerlevels AllLevels
Eded on May 14 1743 1630 an b Torelnan
changad call W GetToken 1n sscapocomple ¢ IDProc. rather than TokenProc because of fle
st comuning < Homming sied (unE Lrch - ER and 51 o R

lwkm: ot
" retuiny 1 1f o fovn,
MR A —

218 Reso 17
chnger o Escape

Eaiied o3 Sepienbr 1. 1961 12 1 pm. by Tevieiman .m
D75 b wheretn was nOf PAISIng the REAT SETDF © PantDec IFTOmSOUICE
changes w. Help

23 in Uservochuscimpt Pt FTomscce
canuuxm. Suspended. WHCMLE @ Acucn Ares &

T —

Rope Fina
a3

wwegories MoveTo Dis Teie o WewMal Priot Prin
15 e 83 oot pa Re: use of lsts and List
- 16 Sep B3 Rosmick ES

A8 - RopeLenghlexpracpe) -1 -
Nesl Wilhelm seminar changed w 1030 hmcrmw < e Length{exprepe)
Fareseell Party for Sam and Jack Sargens
More Info Santa Tlara Ballel ot Flins Cenver
Re- use of hsts and List
- v tluses ouad

1 sap 1y s Wi mina chtngd 0 1838 e

5§ bemete timor Meren

s Sons Kehauiny and Fks @ the Pubis

Expen sysem neres

Al breass clearea

2, returning © Work ates

< 30 sep 83 AllenPA Mare Tennis Tickess -+ All Gone”

ubject, Ned Wiihetn seminar changed W 1030 wmorow
7o Methodelogy
Repiy-© MBrow:

"Acuve Delowd AMTypesSupgesuons Awoms BeckBurner CodarPape
mcussor Forum

HowTo Humor lmpiedSugs Inkineoll 1o Misc MyBugs

Otherstrags

Sovimes. 4o Wihelm seminer changed 10 1030 morrow Rveran_ speit Tmrs

To’ ComputerResearch , ComputngSazinat 1, COMPUTNESemInarRemoie s UserBxecChanges UserExecoll UserRequests VideoTape

Bayly=Te MBrown ViewersSuggssuons

Fegar nishee

To avard conflict with the IDL lab meeung, the tme of Neil Wilhelm's setnar has

s 4 10
hanged o 10:30 samarrose, 20 Sepamber (sull 1n CSL Commons] Here 1s 4 repeat of Whe ude rewicoed 14 gessages

Eomionasina: rounsved'] mestatss

Figure 18: The Walnut Mail System Entering a message into my
reminder system

The messages marked with ? (see Figure 18) are the ones that [haven’t
read yet. Messages regarding events I want to be sure not to forget,
such as a talk or meeting, 1 can enter into my personal
calendar/reminder system by simply clicking the Remind menu button
on the corresponding message as shown in Figure 18. The Reminder
system obtains the time and date for the corresponding event from
the message itself, 736 and when the corresponding time rolls around,
a blinking icon will be automatically displayed on my screen (as shown
in Figure 19). If I open this reminder icon, the viewer will contain
this message. 37

Messages that 1 want to save so that 1 can refer to them later I
frequently sort into various categories which I have created called
message sets. | have about thirty of these categories and can add more
whenever I need them. My current message sets are shown in the
Walnut Control Panel (at the lower right in Figure 18): BackBurner,
CedarPaper, Discussion, Documentation, etc.

$35 We rely heavily on our electronic mail systems at PARC. We use them for mail
as well as for the type of announcement that might in other environments be posted
on a bulletin board. In addition to messages from one user to another. announcements
of impending meetings, for sale notices, and the like are all sent as messages directed
at expansive distribution lists. You can see examples of such messages in my Active
Message Set in Figure 18 (middle viewer, left hand column).

There are a number of such electronic mail systems in use at PARC (because there are
several different programming environments). However, all of these access a common
mail distribution service [1}. Walnut, the mail system for Cedar, provides facilities to
send and retrieve mail and to display and classify stored (previously retrieved) messages.
Walnut uses the Cypress database system [3] to maintain information about stored
messages.

136 You can see the feedback from the reminder system in the message window at
the top of the screen: "Reminder will be posted at Tuesday, September 20, 1983 10:30
am for 60 minutes.” This time was computed from the string "10:30 tomorrow"” in the
subject field of the message. using the date field of the message to determine the
reference point for “tomorrow,” i.e., pretend today is 19 Sep 83 when figuring out what
tomorrow is, even though I am actually reading the message on September 20 (the day
after it was sent).

137 Here is an excellent example of what we mean when we say Cedar is integrated:
the various facilities can use each other in important ways since they all coexist in the
same address space. (Here the reminder system uses both Walnut and Tioga.)
Furthermore, there need not be any explicit context switch and corresponding loss of
state when switching between tasks or programming tools, for example, in switching
from debugging, to editing, to reading mail. Integration is one of the reasons why a
large virtual address space (> 24 bits) was one of the highest priority items in our
original Catalogue of Programming Environment Capabilities [4}.

190

If 1 point at one of the message set buttons in the Walnut control
panel and click the mouse, Walnut creates a viewer on the
corresponding message set. This viewer shows the date, sender, and
subject of each message in the set. For example, I typically save
messages about bugs in my software in the message set called MyBugs.
The message regarding the bug I want to fix is in this message set,
which I'll now open.

The message that I am interested in is 11-Feb-83 Willie-Sue.pa
bug??. 38 T'I| click it, and Walnut will obtain the message contents
from the data base and put it in a new viewer as shown in Figure 19
(top viewer, left hand column).

A Bug Report

The message states that when an event consisting of just a comment
is typed to the executive, an error occurs. Let's try it and see. Instead
of typing the comment in the message into Work Area A, I can simply
copy it by selecting the conegrpondlng characters in the message while
holding down the SHIFT key.

&10 -- try it now

ERROR 10Impl.EndOfStream from
Inputimpl.GetCedarScannerToken1

computation suspended, switching to Action Area E...

(and down below a new Work Area pops up in which appears:)

Action # 1 (kind: signal, process: 204B) (from Work Area A)
ERROR 10Impl.EndOfStream[stream: {15501066B - Input From
Rope Stream}] from Inputimpl.GetCedarScannerToken1

iogonies _Annaer—Porw, e e Ploces Levels Yemins

Inpaitaps c-‘-:-m
o i sessemtad ot o Acacn Az E

e willie-sue pa

70 whun 1 mpecisd wouit e 3 commenn - iy 1t nowt R,
et wuh

i scuon srte anmoineint ERROR J0LaL £no0R e smlmombie]

Quotes 1 commands again

71u1 83 MBrown pa error generaw by “&18 swurce commander”

Acuvo Deloied AMTypesiugesuons Awms BakBurnsr Cedarpape]
eAndTime dealeresamples Duscussion Documenwuon Forum
HowTo Humor ImpiedSuts inlmePoll 1 Lists Misc MyBugs

end-of-Mie 1n sung bseral

Riverkant § Tsmre
GreEeeeChantes. Do aeePoll GsrReaess. VidesTapm
Vleverssu(esuons.

Dang Ct

Glosing Wabat wansacaon
Closing Walnu: qansacuon
Gpering Walnut \cansaction
Restar: (inishes

m T —
Proceed” vory

Sourte WalSurk ShowFrame

8 Sep 83 Nizpo
19 Sep 41 Swinpa Newswry

udsing et sdiad sniry
Xe- updeunt lat-edima

Tt o730 1635 o (Auditorsam, Baldew Sogh (U of
R upsing st sdiied catey
Re car service suong ANTI-recommendation
Incadescent numor “a
Pany Tune for McGregor and Priends
Mem tor tne wook ending 3728
Re: Codar Command Lin
85 vanleunenps PMaranPA

By Singhs v e one ek

Acuon #4 (ing_ signal, process 206B) (from Work Area A)
ERRGR [0lmpl EndCiSweasuman o zs-us Tnn From Rope
ram }] Mom Inpudgl GetCedarScannerToi

o a2

Figure 19: A user reports a bug via an electromc message; Checking
out the problem causes an error which results in the creation of a
new Action Area

Well, it’s just like the message said. We got an EndOfStream error,
and are now in a new Action Area.t¥ 4 Let's walk the stack and
see what’s happening.

&1 WalkStack
&2 WalkStack
&3 WalkStack
&4 WalkStack
&5 WalkStack
&6 WalkStack

The first five levels of procedure nesting correspond to internal calls
within the 10 package. However, the procedure
UserExeclmpl.lsWellFormed looks more promising. Let’s look at its
source.

Inputimpl.GetCedarScannerToken
Inputimpl.GetCedarToken
Inputimpl.fromTokenProc
Inputimpl.GetCedarScannerToken
Inputimpl.GetCedarToken
UserExecimpl.IsWellFormed

191

23932
Rope.Equal["« ",
+42

&7 Source userexecimpl.mesa
IF Rope.IsEmpty[rope] OR NOT
10.GetCedarToken[stream]] THEN GOTO Yes;

The underlined location marks the place in the source that corresponds
to where the computation is now. It looks like the program is using
the procedure 10.GetCedarToken to read a token from stream. Let's
examine the variable stream using the interpreter.

&8 « stream
{157254228 -

Note that streams have PrintProcs which print out the kind of stream,
suppressing the stream’s actual representation.’r43 In this case, we do
want to look inside of the stream at its data, which we can do using
the interpreter. First, I'll find out the stream’s type.

Input From Rope Stream}

&9 « &?
is of type STREAM: TYPE = REF I0.STREAMRecord;
I0.STREAMRecord: TYPE = RECORD[streamProcs: REF

10.StreamProcs, streamData: REF ANY, propList: Atom.PropList
« NIL, backingStream: STREAM « NiL]

This says that a stream is a REF to a record consisting of four fields:
streamProcs, streamData, propList, and backingStream, each of
which have the indicated type. Let’s look at the streamData field,
which contains the data for this particular stream.

&10 « &.streamData
t[rope: "-- try it now", pos: 13]

Even though the type of this field is REF ANY (so that different kinds
of streams can store different types of data in the same field), the
interpreter is able to figure out the type of the referent using the
run-time type system. It tells me that the data for this stream is a REF
to a record consisting of two fields named rope and pos, whose values
are "-- try it now" (notice that this ROPE has 13 characters), and 13.
In other words, the current position, pos, does indeed correspond to
the end of the stream. What happened to the previous 13 characters?
In puzzlement, 1 decide to look at the definition for
10.GetCedarToken. I select the characters 10.GetCedarToken in the
source viewer, and then click the Open menu button to create a new
viewer on the IO interface positioned at the definition of
GetCedarToken, as shown in Figure 20.

138 The video tape that this demonstration was taken from was originally produced
in February 1983. whereas this paper was written in September, 1983. Obviously this
and other bugs that 1 will fix during the course of this demonstration were actually
taken care of many months ago. However, for the purposes of this paper. | have restored
Cedar to the state that it was in February, at least with respect to these changes. and
am reenacting the scenario.

139 Note that in this case I am copying characters from a Walnut message viewer into
an Executive Work Area, still using the same method as we used previously. Consistency
of user interface!

140 Uncaught errors and signals are handled the same as breakpoints: they constitute
actions and are given their own Action Area.

T41 Notice that, since it is now 10:30AM, the reminder concerning that talk [wanted
to attend (entered in Figure 18) has popped up at the bottom of my display. fourth
icon from the left. The icon is blinking to call itself to my attention. If I were to open
this icon, | would find the original message.

$42 The Cedar Language provides for an extremely restricted form of GOTO statements,
namely to a series of labelled statements called an ExitsClause that appear at the end
of a block. Think of GOTO as the Cedar way of spelling EXIT.

143 A stream in Cedar is simply a producer and/or consumer of byte sequences. The
stream abstraction can be implemented in a variety of ways. for instance, the producer
behind an input stream might be a file or a user typing at a keyboard. We call each
stream implementation (file. keyboard. and so on) a stream class. One of the most
important aspects of streams are that a typical client program can manipulate a stream
without regard to the class that implements it, so varying stream implementations can
be substituted without effect on the program [2]. Furthermore, new implementations of
streams can be supplied by the user. Examples of such user defined streams are:
decrypted input and encrypted output streams layered on top of other streams, an
output stream that automatically indents to indicate structure, a stream which reads
Intel format absolute binary object files, and a stream that emulates Unix pipes.

icar Get Gedmpl PrevEile we Time Sp
Find Word Def Posiuon Normalize PrevPlacs Reselect
FirsiavelOnly MoreLevels FewerLevels AlLevels
& disnngush - foo7 from ~ 700
IsWellFormed racc frope: 2072] luulls[wol.ul] 1

- nince steoams already scquired, we might consider saving 3

rem an
4 chzbimyly[mr:] on 2ot Rope Equal(*+", ISR stream]) THEX GOTO Yer;
lO!xuu Ge\fmmnner'raken[smm wiL !

10SynaxEsror «> Gors
OfStream = GOYO st

ind Split New Stop Compile
Proceed #bors Source WalkSuck

3 Acuon #4 (kind: signal, process:
EXDLOOR; ERROR 10lmpl EndOIS:

exirs Stream}] from Inputmpl GetCed:

Yés o artuan[tave]; &1 wassicx tCed,

No «> kzTuaK[ratsz], A2 waxsick ed

A3 waxsicx T

A% waxsicx 1Ced

ear v Gedmpl PrevFile ve Time Sph A5 wasstacx 0 1Ced,

Find Word Def Posiuon Normalize PrevPlace Reselect W

FusuevelOnly MoreLevels FewerLevels AllLevels
definiuon i3 (NETORN[FALIE, TAUL)} 16 in.Getoquence(Every Thing] tewurns Be

7 Source userexecimpl mess
X Rope IsEmpty rope) on X0t Rol
10GeWCedarToken(swean]) TazN

A8 - suesm
Parsing the faput stream as a sequence of Cedar Tekens: GeiCesarToken {137254228 - Input From Rope St
raoc {iwsan stazan] EruRNs(acrE]:

%‘ As or Iype STREAM TYPE « REF
ases o Scan e input sussm ¢ next mess token, which 13 rewrned a5 | 10STREAMRecord: TYPE « RECO
R[50, 33 IO SueamProcs, sweanDats: REF Al

rope. o5 o the vieam 10 e
L ba:kmgsuwn STREAM -

id return the nine wken:
avtomaucally niters out M comments Fot conveni
‘regular character, rather han CIUSING 9 IYTNA error, ve. “&21" will parse 3
2 single wken.
Getatom, QetBoo), GetCard, Gatint, GetBual. ang GotRope descrived belo provide ways ot
parsing INe inpul stream into cbjects of the ing 1ype. 1i the client knows wha 1ype ot
object is nex1 expects put routine o

2y W now, pos 13)

Flgure 20: The IO interface serves as online documentauon

Aha! The comment in the IO interface says: "GetCedarToken
automatically filters out all comments.” The problem is that when
my program asks for the next token from the stream, there isn’t one,
because comments are filtered out when reading tokens. So the error
EndOfStream is raised. T What I should be doing in this program is
catching the signal EndOfStream in the call to 10.GetCedarToken,
and simply returning TRUE. Let’s make that change.

Now let’s return to our Action Area on the right, and since we are
finished with this problem, we can abort the action, and return to the
Work Area above.

Compiling, Support for Parallel Operations

Now I want to compile the files that I have edited. The system keeps
a list of those files that need to be compiled, i.e., those that were
edited but not yet successfully compiled. It also provides visual
reminders in the form of a black border around the corresponding
icons, as shown in Figure 21. I can instruct the system to compile all
of the files that need compilation via the command compileall. 145

&10 compileall
>Compile UserExecMethodsimpl.mesa UserExeclmpl.mesa

While that is going on, I'll answer Willie-Sue’s message. I click the
Answer menu button in the viewer containing her message, and
Walnut creates a reply form containing the appropriate Subject, To,
and cc fields. In Figure 21, I am in the process of composing my
answer in the viewer on the lower left, while the compiler continues
to run in the Work Area at the upper right.“46

I finish composing the message, and click Send, and the message is
sent on its way. In Figure 22, the Walnut Control Panel tells me that
the message has been delivered. The next time that Willie-Sue clicks
her NewMail menu button, she will see the message.

144 The Cedar language uses signals and errors as a mechanism for handling exceptional
conditions. Think of a signal/error as a procedure call where the body of the procedure
is determined dynamically using the call stack.

+$45 CompileAll simply keeps track of those files that have been edited. It does not
deduce that because Interface A has been recompiled. Modules B, C, and D also need
to be recompiled. This latter behavior is much more ambitious and falls under the
category of what we call System Modelling. A preliminary version of a system modeller
has been built and tested, and a more comprehensive version has been partially
implemented.

146 As mentioned earlier. Cedar supports and encourages concurrent operations. and
users make heavy use of this parallelism. Here 1 am sending a message while compiling
a file. In this particular case. only one task requires my attention: the other is running
in background {my background. not the computer’s). However. it is not uncommon for
users to be performing several foreground tasks simultaneously, such as editing several
source files at the same time, or debugging a program by stepping it from breakpoint
to breakpoint. while simultaneously reading mail. etc. The important point is that the
user’s interactions with the system can match the style with which he is most comfortable.

192

roeze Sangories answer Yorw: i gv Tl Places Tovels Femin

o
£2208 1O1mp.
X asawrTobea !
Computition suspended. swiiching Acton Ares K.
s

& whe-sue pa

18 computeats

“Compile UserE secMetnotstmpl mesa Userfzecimpl.mess
impl

§17ped what | expecied wouls e & comment 1o the erec. ¢ €
Wit greewa with 4n & Compiling UserE xecMethods

uy 1 now*

rve armenent EXROR Iimpl EnaOTo e mtmon e

on File.
Messageser Lins
e e

HowTo Humor tmpleduge InhnePull 1o Luts Misc MyBugs
nersBugs

Riverkatt Spell Thins
Usertreconanges UserErecPoll UserRequests VideoTape
Viewersuggesuons
Tong Cneckpont
losing Walnut wansacuon
Clonng Walnut uansacuon
Spanine Walnu ansacion
Fesuan iished

su»mx ooy
In-reply0 Y Far message of 31 Pen-01 150227 pET

done
done

Thanks for your bug report. 1 fuzed e problem Pyl

ing Tpur New pie Foal Medo ter Glar

s of type STREAM TYFE 1 REF IOSTREA]
o ETRE AMRecard; TYPE - RECORD reanFroc
rap A PropLiss -

earton

Flgure 21 Cedar supports concurrency: answering mall while
‘compiling

Meanwhile the compiler has successfully compiled the first file (notice
in Figure 22 that the black border around the fifth icon from the left
is now gone), but ran into a problem in compiling the second file.
The UserExec has created a viewer on the left which displays the
compiler log containing the error message.

t47

]
a s
et Soapeaded Sere g o Avuon Aras E..

stor

cc smihe-sue pa 218 compueat
ZCompte UserEsec ethodsImpl mess UserExecimpl aesa

1 typed what | expected odslan

1w greeted with an acuon area

would be » comment

R 0 £e s eam pmonie] Eumhn; Urrtrecimpt 1 eror

Acume Toled AT poctvgpmuons R Btumet Camrid

orum
MowTo Humor ImpiedSute |nlmmu lo Luu Misc MyBugs
ersbuzs

s

[Sleaz "Rosot Cot_Cedmpl ve s Sphi Plaes Levels Ohangelo Reverkart
g T4 Compie of 13- AP~ SR
1-sep- 3
Command UserErecMewnodsimpl mesa
inTEAs Methotsimpl.mess - fourer oKens 3176, ume. 23
e bytes. 2762, limks. 41, frame sze 56

o fanding mu sending W § rocipueny
Meseogs nas heen dal

and_ Oserprecimpl o
i ;ﬂw i mpryrope] ok "NOT Roge Equai(*-
5T ves T

GetCodarToxen(szeam * 10 EndCfSeam o
s ‘ o ind Spit New Twp Compile T Sleor

- gyoaz

e o type STREAM TIVE . REF OSTREAMRecoH.

ocotd: TYPE » RECORD[sueamProcs: PE)
evaaDas K2 AN

AM - WL

—_
bt
- . . proplust. At vmme -

UserErectmpl mess -- sboried. 1 emors. ume: 23

ftope HE U s 13
a1t Avort
aborted Acuon #8, tewurning © Wor

Total elapsed ume 52

Figure 22: Compiler error log

The error is a simple syntactic error, a missing ']. I'll make this fix
and recompile. In the meantime, this reminds me that a user had sent
me a message about a request concerning the UserExec’s behavior
with regard to the compiler log. I keep such messages in my
UserRequests message set. I click the UserRequests button in my
Walnut Control Panel to create a viewer for this message set, and then
look at the corresponding message, which states that the user wants to
be able to specify that compiler logs are always created iconic instead
of always being open as in Figure 22.

147 The compiler log includes for each error a position (character count) in the source
file. The user selects this position. and then clicks the Position menu button in the
corresponding source file. and the source file is automatically positioned at the indicated
location. The user can thus quickly step through the source file from error to error and
make the necessary edits. Even so. the process of getting a file to compile successfully
is still very tedious. More tools are required. For example, many compiler errors turn
out to be of the nature that their correction could be automated. One could imagine an
extension of DWIM that would handle this task.

The User Profile

Since some users like the way compiler logs currently work, to satisfy
this user’s request, I am going to define a new user profile option so
that each user can specify how they want the compiler log handled.
In the area of user interface, rather than enforcing a consensus upon
everyone, we allow individuals to tailor the system to suit themselves,
enabling facilities that they like and disabling those that they don’t.

Let's implement the new profile option. It willl allow me to
demonstrate an important aspect of the Tioga Editor: its abbreviation
expansion facility. I'll create a new viewer, load it with the appropriate
source file, and then scroll to the place where I want to make the
change. What I want to do is to insert a conditional statement that
will check the user’s profile to determine whether or not to create the
viewer for the compiler log iconic.

Templates as an Aid for Editing Programs

To accomplish this, I'll use Tioga’s abbreviation expansion facility to
cause a template for an IF-THEN statement to be inserted. To do this,
I type IF followed by CTRL-E (E with the CTRL key depressed). This
causes Tioga to expand the abbreviation for IF into the template IF
» TEST« THEN » TRUEPART«. 78 This template contains two fields, TEST
and TRUEPART, each delimited by special brackets called placeholders,
displayed as »«. Tioga allows me to move to the next field delimited
by placeholders with a single keystroke. If I am positioned at one of
these fields, anything I type replaces the field. Right now, | am ready
to specify the predicate for my IF-THEN statement.

The predicate 1 want to use is the procedure UserProfile.Boolean. [
type the name of the procedure, UserProfile.Boolean, and then I
type CTRL-E again, this time to request a template for its arguments.
Note that UserProfile.Boolean is not defined as an abbreviation;
Tioga computes a template consisting of the names, types, and default
values for this procedure using the run-time type system, and inserts
it in the document as shown in Figure 23,149

Places Levels Changelog

Clear Rese et etlmpl PrevFile &wre Save Time Split
Find Word Def Position Normalize PrevPlace Reselect
FirstLevelOnly MoreLevels FewerLevels AlllLevels
ShowLog: PROC [name: ROPE, Ok: BOOLEAN, exec: ExecHandle, blinkIt: 3001 ¢ TRUE]
RETURNS[log: Viewer] =
log « ViewerOps.FindViewer[name];
Ir NOT 0k THEN

createlconic: BOOLEAN « TRUE;

1r exec # NIL AND NOT exec.viewer.iconic AnD (InputFocus GetlnputFocus(J.owner =
exec.viewer) THEN createlconic ¢ rarse;

1 UserProfile Booleankey: BRI, defsult; PBOOLEAN « FALSE(] THEN
»TRUEPARTY

1P log # NIL THEN ViewerOps.ReswreViewerflog)

eLsE Ir UserExec.CheckForFile[name] THEX log « CreateLog{name: name, iconic:
createlconic]; -- log not where in case of no such source

ELSE 1P log # NIL THEN (
1r desuoyLogOnSuccess THEN {ViewerOps.Destroy Viewer([log]; log « n1L}
LSk ViewerOps.RestoreViewer{log];
3
b
CreateLog: prOC [name: ROPE, iconic: BOOL + TRUE] RETURNS[Viewer: Viewer] = {
viewer « ViewerOps.CreateViewer[flavor: $Text, info: [name: name, file: name, iconic:
iconic]]
b

BlinkIcon: PUBLIC PROC [icon: Viewer, n: INT « 10] = TRUSTED (
Yy Datachi Rliniri n’

Figure 23: Computing a template for a procedure call

As the template indicates, UserProfile.Boolean takes two arguments;
the first is named key, and is of type ROPE, the second is named
default, and is of type BOOLEAN. I'll call the key for the new user
profile option that 1 am going to define Compiler.IconicLogs. If the

+48 The Tioga abbreviation expansion facility helps the user in dealing with the Cedar
syntax. avoiding errors. and formatting programs consistently. There are similar
abbreviations for many of the language constructs in Cedar, e.g.. FOR expands to FOR
»ControlVariable 4 ¢ pInitialExpr«4, »NextExpr4 DO »BODY <4 ENDLOOP. In
addition. the user can add to or change the set of predefined abbreviations.

449 Runtime availablility of all source program information was another important
item on our original catalogue of programming environment capabilities. Underlying
this was our desire to make it easy to extend the set of tools for assisting the programmer.
The computed template facility shown here is a good example of the kind of thing we
had in mind.

193

value of this key is TRUE, i.e., if the user’s profile contains an entry of
the form Compiler.lconicLogs: TRUE, then I'll make the compiler
log viewer iconic. The entire statement that I inserted is:

IF UserProfile.Boolean[key: "Compiler.lconicLogs", default: FALSE]
THEN createlconic ¢ TRUE;

but I only had to type the underlined characters plus two CTRL-E’s.
Using the Interpreter for Experimentation

There was another request in my UserRequests message set concerning
compiler logs, namely that the compiler log use the typescript icon
rather than the document icon, to make it easier to distinguish the
compiler log from other iconic Tioga documents.

Before we make this edit, let’s try changing the icon for this viewer
by hand, i.e., by using the interpreter."50 So I'll reopen my interpreter
Work Area, select the compiler log, and use the Eval menu button to
evaluate the current selection.

&19 CurrentSelection

WViewar - class: Text, name: Compiler.Log}

The value of this event is the viewer for the Compiler Log. I can
manipulate this value. For example, let’s look at its icon field.

&20 « &19.icon
document

As expected. Now let’s change this field to be typescript.

&21 « &19.icon « typescript
typescriptt -> typescript
typescript

Now let’s repaint the icon and see how it looks. I can do this by using
the procedure PaintViewer, which is in the interface ViewerOps.

&22 « ViewerOps.PaintViewer[&19]
** *Missing Arguments: hint: ViewerOps.PaintHint

What's a paint hint? I'll evaluate it and find out.¥52

&23 « ViewerOps.PaintHint
ViewerQOps.PaintHint: TYPE = {all, client, menu, caption}

This says that a PaintHint is an enumerated type consisting of the four
values all, client, menu, and caption. I'll bet I can just pass in all for
the hint argument. Let’s try that.

&24 « ViewerOps.PaintViewer[viewer: &19, hint: all]
{does not return a value}

Sure enough the icon for the compiler log (the icon in the center of
Figure 24) is now a typescript. I can now implement this feature by
editing the corresponding source,

150 Using the interpreter to try things out before going to the trouble of making
changes to a program is a technique that is retatively new to the Mesa community
(although it has been commonplace in Interlisp for many years). Part of the reason for
this is historical. Earlier Mesa debuggers were non-resident; the debugger operated at
arm’s length from the debuggee in an entirely separate address space. Interpreting
expressions in this remote world was slow and cumbersome. Furthermore, the interpreter
only handled a limited subset of the language. We had higher aspirations for Cedar: to
provide a resident debugger that shared the same address space as the programs being
debugged. as well as a complete expression interpreter. Thus, the Cedar environment
represents the first opportunity that Mesa programmers have had for realistically using
an interpreter to carry out experiments.

51 Obviously I am making some of these typing mistakes just to demonstrate the
pervasiveness of the error correction facilities. but this correction is especially interesting,
because DWIM uses as candidates for the correction only the set of values that an
object of type icon can assume. In order to find what these are, DWIM uses the runtime
type system to compute this information when the error occurs. In this way, DWIM can
work on user defined types as well as those that are defined in the basic system.

52 Note that in this example, we are evaluating an expression whose value is a fype.
One of the goals of Cedar was to make types into first-class citizens. It is still not
possible to pass types around as values, and there is no polymorphism in the language.
However. at runtime, it is possible to perform a wide variety of operations on types.

However, now | find that while I have made it easy to distinguish the
compiler log from the other documents, there are so many typescript
icons that it is hard to find the compiler log among all of them.

possible ame-sover on rallback
Re pocsible ume-saver an rolback

comprler log
1w 83 MarweRpe dew iooo for compReriop

UserPrafile ListOfTokens

15 “Wrat | Mean” dhiferent fram "What You Mean™>
1 dan't koow what this should do. but

aKEnuy opens viewer

AMTypessuggesaons Awms BacvBurner Cesarrape]
DawAndTime dsaletesamples Discussion Documentstion Forum
HouTo Humor inpledSuge Tinatoll 1o L M MyBuec

om
FomniurEranpies FrosrRa Spell Topasupsesuons Tomrs
UserkzecChanges UserEsecPoll UserRequesss VideoTape
iewerssuggesuons
Restrt nmshed
Autenucuung e
arsing. .. ¢ mimaars. sending 1 recipens
fre et

am 1 running Wns version of a bd >
m the command ine

i Vew
AT e ™y
Brear #1 m VanrE secisc Rl PR

e > Tiogadhs Croasbimpiapevarnureo], -
patern for the et

op Gompile FY: loar
breas #15e

(wource: 139513
- crosies o

i of

Sould 03 change Viewest secCysingi Showkesult 5o that the compierIogs 1con 15 3 ypescript

(pended, SWimng 1 Acuon Ares & 5R0C 51, 52
. case: 300L + TRUE] RETURNS [1e1],
ke Indexs, retuns poneion th +1 Where 17 ociurs (st

instesd of o document” Here 13 the necessary

log + ViewerOps CresweViewer[(lavor $Text. info (name name, fle name, 15ORIC. 1C0RLC, Icon
e pesrip])

nsiead of

Iop + YieverOps CresteViewer{Nlavor $Text. info: [name. name. file name, 1camic. 1Gomc]}

s of type
Brak #1 in UserExschisclmpl PrineeciFromsourcs.
SomEoan suipended. SmiChing @ AFuch AR

ime_Eph Plaes Tevels
Word Cel Pomaon Normalize - bvevPlace Keerec
FimiLeveionly ~ Morehcvels " Pewertcasty AllLevels

2is Tumensetecuon
Ediied ou September 20, 1982 440 om, toiman, {Viewer - class Tert, name Comptier Log)
et userpronie cpacn 1 ,u ns et 5F eaniz, 103 creoelng 1 use WpescHpt icon &28 - a19:con

hanges . Showlot,

ps. T} 1, ¢
T g s TR A el St
{does ool rsura’ value)
23

Flgure 24: Now there are too many typescript icons

Designing a New Icon

One way of solving the problem of too many typescript icons is to use
a different icon for some of the executives. I'll use a graphics tool
called the IconEditor to design a new icon for Action Areas executives
(the two executives on the right in Figure 24).

&25 run iconeditor
Loaded and started: IconEditor.bcd

In Figure 25, the Icon Editor shows some of the icons that other
people have designed for various applications. The Squirrel icon is for
our data base facility which is named Squirrel. Next to it is the Walnut
mail reader icon you have already seen. Also included in the two rows
of icons are an icon for a calendar, a bus schedule, a TV listing, an
organization chart, etc. The last icon in the second row is the
trafficLight icon I am working on (for executives stopped because of
a signal).

= play D eico
TinUs ShifiDn BLAL(DANKL Mirmr eiavel Uniedabel Reginer
Ve DonToporey DarkGray Bk nveCeier Diswtine Whiecobel BieaLabel

rie symptescons icon Name

Ative Delowd AMTypedufgesnons Aloms Backbumer Cedarpare]
DoteAndTime dealereramplas Discussion Documentauon Forum
HowTo Humor ImpledSuge InlnePoll 3o Lists Mic_ MyBugs

from Tcon Nle__Smpleacons

RemmderErampies RiverRaft Spell TiopaSuggesnons TShirs
ExecChanges UserEzecPoll UserRequests VideoTape

ViewersSuggesuons

o
int mimsags... sending w0 | recipsents
4¢ has been dehvvered

at New lear
s e, SRR & Ace AT
Stored

a1 Cury

v Tl Text, name CompiierLog)
aiscon

document

3L bucen - wyperon

rmenpa

typescri

A5 iewerops puntiower(a 5]

+**Missing Argamen; rewerOps Parnuting
423 + Viewerops Pant

ViewsrOps ParntHin: TY] I, client, menu, capuon)
434 < ViewsrOm Pant icwer 419, Tt alt]

o not vecom s vaiue)

ind Spie New fu r Clear
Xomple GierErecMemotsiapl tess UierExeclngl ness
Compiling UserExecMethodsimpl
Falng_UserE secimpl
Ené of compilavan
errors in - UserEzectmpl

Terrors

Redo 10
>compileail

>Compile UserExecimpl mse
Compaling: UserExeclimpl
End of compilauon.

212 ron \conegiar

Loaded and staried. lconBdror.bed

Flgure 25: The Icon Edltor

The 64 x 64 array of squares that occupies the lower two-thirds of the
Icon Editor’s viewer represents the individual pixels in the icon
currently being edited. I can change individual pixels from black to

194

white or vice versa by clicking with the mouse in the corresponding
square. | can also draw lines, change rectangular areas to different
textures (stiple patterns), shift rectangular areas up, down, left or right.
As | make changes in this array, the smaller version of the icon is
updated so that I can see how the icon is going to look, actual size.
I'll make a few finishing touches to my icon — darkening the red light
and adding rays of light coming from it.

I’'m happy with the icon now, so I'll save it on a file and also associate
the name "trafficLight” with this icon by using the Register menu
button in the IconEditor viewer. This will allow me to refer to the
icon by name without having to remember where it is stored.

Now let’s use the interpreter to change the icon of one of the executives
to be the trafficLight and see how it looks. First, we obtain an exec
handle by selecting the viewer and evaluating the current selection.

&26 « CurrentSelection

t[viewer: {Viewer - class: Typescript, name: Action Area E:
aborted ERROR 10impl.EndOfStream from
Inputimpl.GetCedarScannerToken1}, privateStuff: 7246044B+]

This value is the handle for Work Area E. Now let’s set its icon to be
a trafficLight.

&27 « &26.icon ¢ IconRegistry.Geticon["trafficLight"]
selection failed on icon

The viewer is one of the fields of the exec handle, and icon is one of
the fields of the viewer. I am one level of indirection of: I should
have said "&26.viewer.icon." Since what ! did type is correct in every
other respect, I can fix this by simply replaying this line, pointing at
the "." in "&26.icon," and typing "viewer", as [am in the process of
doing in Figure 26.753

TESTO:
Restart finished
Authenticating user
... Parsing..... Sending message....
.. Message has been delivered

.sending to 1 recipients

Inuterg reter
Find Split New Stop Compile Eval Redo Set Clear

&23 « ViewerOps.PaintHint
ViewerOps.PaintHinu TYPE = {all, client, menu, caption}
&24 « ViewerOps.PaintViewer[viewer: &19, hint: all]
{does not return a value}
&2S$ CurrentSelection
+{viewer: {Viewer - class: Typescript, name: Action Area E:
aborted ERROR [OImpl.EndOfStream from

GetCe Token 1}, pi T: 7246084B+]
&26 « &2Sicon « IconRegistry Getlcon["wrafficLight"]
selection failed cn icon
227 « a2svieicon « lconRegistry Getlcon(wafficLight')

ind_Split New Stwp Compile Eval Redo Set Ciear

>Compxle UserExecMethodsImpl .mesa UserExeclmpl.mesa
no errors

Compxlmg UserExeclmpl . 1 errors
End of compilation

_- Errors in -- UserExeclmpl

&11 Redo 10

>compileall

>Compile
Figure 26: Editing events as they are being entered

pl.mesa

&28 « &26.viewer.icon « IconRegistry.Getlcon|"trafficLight"]

Now let’s repaint the icon for action area E and see how it looks. We
already have an expression in event 24 that is pretty close to what we
want, namely ViewerOps.PaintViewer[viewer: &19, hint: all]. We can
use the use command to specify reexecution of this event with a
different value for the viewer argument.

&29 use "&25.viewer" for &19
>« ViewerOps.PaintViewer[viewer: &25.viewer, hint: all}
{does not return a value}

And there’s our traffic light (see Figure 27).

Let’s go ahead and make the edit that will cause the system to use the
trafficLight icon for Action Areas.

53 In previous examples. the only editing of the typescript that we did consisted of
appending characters to its end. This examples illustrates that we really can edit, in the
full generality of the term, events that are being entered for execution.

ind Split ew Stop ompile Eval edo set Clear
&23 « ViewerOps PaintHint
ViewerOps PaintHint: TYPE - {all, client, menu, caption}
&24 « ViewerOps.PaintViewer[viewer: &19, hint: all]
{does not return a value}
4&25 CurrentSelection
+[viewer: {Viewer - class: Typescript, name: Action Area E:
aborted ERROR 10Impl EndOfStream from

GewCe ‘Token 1}, pi 1: 724608481}
&26 « &25.icon « IconRegistry Getlcon["wafficLight"]
selection failed on icon
&27 « &25.viewericon « IconRegistry Getcon["trafficLight"]
27B?
&28 use "&25.viewer" for &19
>« ViewerOps PaintViewer[viewer: &25.viewer, hint: all}
{does not return a value}
&29 «

>compileall

>Compile UserExeclmpl.mesa
Compiling: UserExecimpl
End of compilation

412 run iconeditor
Loaded and started: IconEditor.bed
&l13

no errors

Figure 27: The Action Area icon has been changed to a traffic light
Wrapping it up

Now let’s compile the rest of the files we have changed.

&13 compileall

>Compile ActionAreaslimpl.mesa CompilerExecOpsimpl.mesa
Compiling: CompilerExecOpsimpl no errors
Compiling: ActionAreasimpl . . . no errors

End of compilation

The compilation has finished successfully. Now let’s bind the program.

&14 bind userexecutive
Loading Binder.bcd...
Binding: userexecutive
End of binding

no errors

Unfortunately, since the changes we have made were to the UserExec,
a component of the system that is already running, in order to test the
changes out we have to reload the system; we can’t simply replace the
UserExec that is running with the new one. Reloading takes about
two minutes. We hope to implement a facility for replacing an
individual module in a running system. This should greatly improve
the turnaround time on making and testing changes.’r 4

Conclusion

The demonstration contained in this paper has presented a number
of the key concepts and facilities in Cedar. Some of these are: a highly
visual user interface which exploits the high bandwidth display and
mouse pointing device; a uniform screen paradigm provided by the
Viewers Window package. which includes facilities for icons,
whiteboards. and tools, as well as text viewers; a high quality editor
and document preparation system (Tioga); spelling correction
(DWIM): availability of an interpreter for a compiler based language;
a strongly typed programming language of the Pascal family which
also includes automatic storage management, the ability to manipulate

154 One of the top priorities in our original catalogue of programming environment
capabilities was fast turnaround for minor program changes (< 5 sec). "Our concern
with fast turnaround comes from the observation that programming should be think
bound. not compute bound. There are several "knees’ (points of substantial non-linearity)
in one's perception of response delays. One such knee is in the vicinity of 3 to S seconds.
We believe that it is essential to reduce the system time for minor program changes to
below this point” [4]. While the changes that we made in this tour were not minor. sad
to say that even had they been. we would still have been forced to reboot in order to
test them out. Attacking this shortcoming is now one of our highest priority items.

195

types at runtime. and support for Lisp-style lists and atoms; a
sophisticated debugger which includes source-object code mapping to
facilitate planting of breakpoints and examining program state; support
for concurrent operations; and a high degree of integration of facilities
and uniformity of user interface.

Today. in the fall of 1983, Cedar is being used by about 30
researchers. Visitors from other laboratories are envious of Cedar’s
emphasis on visual interaction, of its support for concurrent tasks, of
its sophisticated debugging facilities, and of the wide variety of
packages and tools. Cedar makes it possible for a researcher to design
and implement an experimental computer system in a remarkably
short period of time. For example, in the last few months, various
programmers using the Cedar environment have been able to construct
two experimental systems for handling electronic mail, one for
computer storage of voice messages, one for producing raster images,
several for VLSI design. They all reported favorably on how easy it
was to construct real, functioning systems.

References

[1] Andrew D. Birrell. Roy Levin. Roger M. Needham, and Michael D. Schroeder.
"Grapevine: An Exercise in Distributed Computing,” Communications of the
ACM. Volume 25, Number 4, April 1982.

[2] Mark Brown. "The 10 and Convert interfaces.” in [5] .

[3] R. G. G. Cattell, "Design and Implementation of a Relationship-Entity-Datum Data
Model”, Xerox Palo Alto Research Center Report CSL-83-4. May, 1983.

[4] L. Peter Deutsch and Edward A. Taft, ""Requirements for an Experimental
Programming Environment."" Xerox Palo Alto Research Center Report
CSL-80-10. June, 1980.

[5}J. H. Horning, editor. "The Cedar System: An Anthology of Documentation,” Xerox
Palo Alto Research Center Report CSL-83-14.

[6] D. H. Ingalls, "The Smalitalk-76 Programming System: Design and Implementation.”
Proceedings of the 5th Annual ACM Symposium on Principles of Programing
Languages. 1978.

[7} Butler W. Lampson and Kenneth A. Pier. "A Processor for a High-Performance
Personal Computer,” Xerox Palo Alto Research Center Report CSL-81-1. January,
1981 (also in Proceedings of Seventh Symposium on Computer Architecture,
SigArch/IEEE, La Baule, May 1980, pp 146-160).

[8] Butler W. Lampson, The Cedar Language Reference Manual, Xerox Palo Alto
Research Center Report CSL 83-15.

[9] John Maxwell, "The Cedar Spy." in [5]

[10] Scott McGregor "The Viewers Window Package.” in {S].

[11] James G. Mitchell, William Maybury, and Richard Sweet. "Mesa Language
Manual." Version 5.0. Xerox Palo Alto Research Center Report CSL-79-3.

[12] Beau Sheil, "Environments for Exploratory Programming,” Datamation, February,
1983.

[13] Warren Teitelman and Larry Masinter. "The Interlisp Programming Experience,”
Computer, April, 198

[14] Warren Teitelman, "The Cedar Programming Environment: A Midterm Report.”
Xerox Palo Alto Research Center Report CSL-83-11 December, 1983.

{15] Warren Teitetman, The Interlisp Reference Manual, revised 1978, Xerox Palo Alto
Reserach Center.

[16] C. P. Thacker. E. M. McCreight, B. W. Lampson. R. F. Sproull, D. R. Boggs,
"Alto: A Personal Computer,” Xerox Palo Alto Research Center Report
CSL-79-11. August, 1979 (also in Computer Structures: Readings and Examples,
second edition, by Siewiorek, Bell and Newell).

